2012考研数学大纲及复习计划.pdf_第1页
2012考研数学大纲及复习计划.pdf_第2页
2012考研数学大纲及复习计划.pdf_第3页
2012考研数学大纲及复习计划.pdf_第4页
2012考研数学大纲及复习计划.pdf_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考研数学一大纲考研数学一大纲考研数学一大纲考研数学一大纲一 一 一 一 一 2012 2012201220122012 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲考试科目 高等数学 线性代数 概率论与数理统计 考试形式和试卷结 构 一 试卷满分及考试时间试卷满分为150 分 考试时间为180 分钟 二 答题方式 答题方式为闭卷 笔试 三 试卷内容结构 高等教学56 线性代数22 概率论与数 理统计22 四 试卷题型结构 试卷题型结构为 单选题8 小题 每题 4 分 共 32 分 填空题6 小题 每题 4 分 共 24 分解答题 包括证明题 9 小题 共94 分高等 数学一 函数 极限 连续 考试内容 函数的概念及表示法函数的有界性 单调性 周期 性和奇 偶性复合函数 反函数 分段函数和隐函数基本初等函数的性质 及其图形初等函数函数关 系的建立数列极限与函数极限的定义及其性质函数的左极限与右 极限无穷小量和无穷大 量的概念及其关系无穷小量的性质及无 穷小量的比较极限的四则运算极限存在的两个准 则 单调有界准 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲函数连续的概念函数间断点的类型初等函数的连续性 闭区间上连续函数 的性质考试要求1 理解函数的概念 掌握函数的表示法 会建立应用问题的 函数关系 2 了解函数的有界性 单调性 周期性和奇偶性 3 理解复合函数及分段函数的概念 了解反 函数及隐函数的 概念 4 掌握基本初等函数的性质及其图形 了解初等函数的概 念 5 理解 极限的概念 理解函数左极限与右极限的概念以及函 数极限存在与左 右极限之间的关系 6 掌握极限的性质及四则运算法则 7 掌握极限存在的两个准则 并会利用它们求极限 掌握 利 用两个重要极限求极限的方法 8 理解无穷小量 无穷大量的概念 掌握无穷小量的比较 方 法 会用等价无穷小量求极限 9 理解函数连续性的概念 含左连续与右连续 会判别函 数 间断点的类型 10 了解连续函数的性质和初等函数的连续性 理解闭区间 上连续函数的 性质 有界性 最大值和最小值定理 介值定理 并会 应用这些性质 二 一元函数微分学 考试内容 导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关 系平面曲线的切线和法线导数和微分 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲数的极值函数图形的凹凸性 拐点及渐近线函数图形的描绘函 数的最大 值和最小值弧微分曲率的概念曲率圆与曲率半径 考试要求1 理解导数和微分的概念 理 解导数与微分的关系 理解导 数的几何意义 会求平面曲线的切线方程和法线方程 了解 导数的物 理意义 会用导数描述一些物理量 理解函数的可导性与连续性之间 的关系 2 掌握导数的四则运算法则和复合函数的求导法则 掌握基 本初等函数的导数公式 了解微分 的四则运算法则和一阶微分形式的 不变性 会求函数的微分 3 了解高阶导数的概念 会求 简单函数的高阶导数 4 会求分段函数的导数 会求隐函数和由参数方程所确定的 函数以及 反函数的导数 5 理解并会用罗尔 Rolle 定理 拉格朗日 Lagrange 中值 定理和泰勒 Taylor 定理 了解并会用柯西 Cauchy 中值定理 6 掌握用洛必达法则求未定式极限的方法 7 理解 函数的极值概念 掌握用导数判断函数的单调性和求 函数极值的方法 掌握函数最大值和 最小值的求法及其应用 8 会用导数判断函数图形的凹凸性 注 在区间内 设函数 具有二 阶导数 当时 的图形是凹的 当时 的图形是凸的 会 求函数图形的拐点以及水平 铅 直和斜渐近线 会描绘函数的图形 9 了解曲率 曲率圆与曲率半径的概念 会计算曲率和 曲率 半径 三 一元函数积分学 考试内容 原函数和不定积分的概念不定积分的基本性质 基本积 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲和定积分的换元积分法与分部积分法有理函数 三角函数的有理式 和简 单无理函数的积分反常 广义 积分定积分的应用考试要求1 理解原函数的概念 理解不 定积分和定积分的概念 2 掌握不定积分的基本公式 掌握不定积分和定积分的性质 及定积 分中值定理 掌握换元积分法与分部积分法 3 会求有理函数 三角函数有理式和简单无理 函数的积分 4 理解积分上限的函数 会求它的导数 掌握牛顿 莱布尼 茨公式 5 了解反常 积分的概念 会计算反常积分 6 掌握用定积分表达和计算一些几何量与物理量 平面图形 的面积 平面曲线的弧长 旋转体的体积及侧面积 平行截面面积为 已知的立体体积 功 引力 压力 质心 形心等 及函数的平均值 四 向量代数和空间解析几何考试内容向 量的概念向量的线性运算向量的数量积和向量积 向量的混合积两向量垂直 平行的条件两 向量的夹角向量的坐 标表达式及其运算单位向量方向数与方向余弦曲面方程和空 间曲线 方程的概念平面方程 直线方程平面与平面 平面与直线 直线与直线的夹角以及平行 垂 直的条件点到平面和点到直线的距 离球面柱面旋转曲面常用的二次曲面方程及其图形空间 曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1 理解空间 直角坐标系 理解向量的概念及其表示 2 掌握向量的运算 线性运算 数量积 向量积 混 合积 了解两个向量垂直 平行的条件 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲5 会求平面与平面 平面与直线 直线与直线之间的夹角 并会利用平 面 直线的相互关系 平行 垂直 相交等 解决有关问题 6 会求点到直线以及点到平面的距 离 7 了解曲面方程和空间曲线方程的概念 8 了解常用二次曲面的方程及其图形 会求简单 的柱面和旋 转曲面的方程 9 了解空间曲线的参数方程和一般方程 了解空间曲线在坐 标平 面上的投影 并会求该投影曲线的方程 五 多元函数微分学考试内容多元函数的概念 二元函数的几何意义二元函数的极限 与连续的概念有界闭区域上多元连续函数的性质多元 函数的偏导 数和全微分全微分存在的必要条件和充分条件多元复合函数 隐 函数的求导法 二阶偏导数方向导数和梯度空间曲线的切线和法 平面曲面的切平面和法线二元函数的二阶 泰勒公式多元函数 的极值和条件极值多元函数的最大值 最小值及其简单应用考试要求 1 理解多元函数的概念 理解二元函数的几何意义 2 了解二元函数的极限与连续的概念以及 有界闭区域上连 续函数的性质 3 理解多元函数偏导数和全微分的概念 会求全微分 了解 全微分存在的必要条件和充分条件 了解全微分形式的不变性 4 理解方向导数与梯度的概 念 并掌握其计算方法 5 掌握多元复合函数一阶 二阶偏导数的求法 6 了解隐函数存在定 理 会求多元隐函数的偏导数 7 了解空间曲线的切线和法平面及曲面的切平面和法线的 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲9 理解多元函数极值和条件极值的概念 掌握多元函数极值 存在的必要 条件 了解二元函数极值存在的充分条件 会求二元函数 的极值 会用拉格朗日乘数法求 条件极值 会求简单多元函数的最大 值和最小值 并会解决一些简单的应用问题 六 多 元函数积分学考试内容二重积分与三重积分的概念 性质 计算和应用两类曲线 积分 的概念 性质及计算两类曲线积分的关系格林 Green 公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数两类 曲面积分的概念 性质及计算两类曲面积分的关系高斯 Gauss 公式斯托克斯 Stokes 公式散度 旋度的概念及计算曲线积分 和曲面积分的应用 考试要求1 理解二重积分 三重积分的概念 了解重积分的性质 了 解二重积分的中值 定理 2 掌握二重积分的计算方法 直角坐标 极坐标 会计算三 重积分 直角坐标 柱面坐 标 球面坐标 3 理解两类曲线积分的概念 了解两类曲线积分的性质及两 类曲线积分的 关系 4 掌握计算两类曲线积分的方法 5 掌握格林公式并会运用平面曲线积分与路径无关的 条件 会求二元函数全微分的原函数 6 了解两类曲面积分的概念 性质及两类曲面积分的 关系 掌握计算两类曲面积分的方法 掌握用高斯公式计算曲面积分的方 法 并会用斯托 克斯公式计算曲线积分 7 了解散度与旋度的概念 并会计算 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲七 无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和 的概念 级数的基本性质与收敛的必要条件几何级数与级数及其收敛性 正项级数收敛性的 判别法交错级数与莱布尼茨定理任意项级数 的绝对收敛与条件收敛函数项级数的收敛域与 和函数的概念幂 级数及其收敛半径 收敛区间 指开区间 和收敛域幂级数的和函数 幂级数 在其收敛区间内的基本性质简单幂级数的和函数的求法初 等函数的幂级数展开式函数的傅 里叶 Fourier 系数与傅里叶级数 狄利克雷 Dirichlet 定理函数在上的傅里叶级数函数在上的 正弦级数和余弦级数考试要求1 理解常数项级数收敛 发散以及收敛级数的和的概念 掌 握级数的基本性质及收敛的必要条件 2 掌握几何级数与级数的收敛与发散的条件 3 掌 握正项级数收敛性的比较判别法和比值判别法 会用根 值判别法 4 掌握交错级数的莱布尼 茨判别法 5 了解任意项级数绝对收敛与条件收敛的概念以及绝对收 敛与收敛的关系 6 了解函数项级数的收敛域及和函数的概念 7 理解幂级数收敛半径的概念 并掌握幂级数的 收敛半径 收敛区间及收敛域的求法 8 了解幂级数在其收敛区间内的基本性质 和函数的 连续 性 逐项求导和逐项积分 会求一些幂级数在收敛区间内的和函数 并会由此求出某 些数项级数的和 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲11 了解傅里叶级数的概念和狄利克雷收敛定理 会将定义 在上的函数展 开为傅里叶级数 会将定义在上的函数展开为正弦级 数与余弦级数 会写出傅里叶级数的 和函数的表达式 八 常微分方程考试内容常微分方程的基本概念变量可分离的微分方 程齐次微 分方程一阶线性微分方程伯努利 Bernoulli 方程全微分方程 可用简单的变量代换 求解的某些微分方程可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理二阶常 系数齐次线性微分 方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系 数非齐 次线性微分方程欧拉 Euler 方程微分方程的简单应用考试要求1 了解微分方程及其阶 解 通解 初始条件和特解等概念 2 掌握变量可分离的微分方程及一阶线性微分方程的解 法 3 会解齐次微分方程 伯努利方程和全微分方程 会用简单 的变量代换解某些微分方程 4 会用降阶法解下列形式的微分方程 5 理解线性微分方程解的性质及解的结构 6 掌握 二阶常系数齐次线性微分方程的解法 并会解某些高 于二阶的常系数齐次线性微分方程 7 会解自由项为多项式 指数函数 正弦函数 余弦函数以 及它们的和与积的二阶常系数非 齐次线性微分方程 8 会解欧拉方程 9 会用微分方程解决一些简单的应用问题 线性代数 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲考试要求 1 了解行列式的概念 掌握行列式的性质 2 会应用行列式的 性质和行列式按行 列 展开定理计算行 列式 二 矩阵 考试内容 矩阵的概念矩阵的线性运 算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆 的充 分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩 矩阵的等价分块矩阵及其运算考 试要求1 理解矩阵的概念 了解单位矩阵 数量矩阵 对角矩阵 三角矩阵 对称矩阵 和反对称矩阵 以及它们的性质 2 掌握矩阵的线性运算 乘法 转置以及它们的运算规律 了解方阵的幂与方阵乘积的行列式的性质 3 理解逆矩阵的概念 掌握逆矩阵的性质 以及 矩阵可逆的 充分必要条件 理解伴随矩阵的概念 会用伴随矩阵求逆矩阵 4 理解矩阵初等 变换的概念 了解初等矩阵的性质和矩阵等 价的概念 理解矩阵的秩的概念 掌握用初等 变换求矩阵的秩和逆矩 阵的方法 5 了解分块矩阵及其运算 三 向量 考试内容 向量的概 念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等 价向量组向量组的秩 向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲1 理解维向量 向量的线性组合与线性表示的概念 2 理解向量组线性相 关 线性无关的概念 掌握向量组线性 相关 线性无关的有关性质及判别法 3 理解向量组 的极大线性无关组和向量组的秩的概念 会求 向量组的极大线性无关组及秩 4 理解向量组 等价的概念 理解矩阵的秩与其行 列 向量组 的秩之间的关系 5 了解维向量空间 子空间 基底 维数 坐标等概念 6 了解基变换和坐标变换公式 会求过渡矩阵 7 了解内积的概念 掌握线性无关向量组正交规范化的施密 特 Schmidt 方法 8 了解规范正交基 正交矩阵的概 念以及它们的性质 四 线性方程组考试内容线性方程组的克莱姆 Cramer 法则齐次线 性方程组有非零 解的充分必要条件非齐次线性方程组有解的充分必要条件线性方 程组解 的性质和解的结构齐次线性方程组的基础解系和通解解空 间非齐次线性方程组的通解考 试要求l 会用克莱姆法则 2 理解齐次线性方程组有非零解的充分必要条件及非齐次 线性 方程组有解的充分必要条件 3 理解齐次线性方程组的基础解系 通解及解空间的概念 掌 握齐次线性方程组的基础解系和通解的求法 4 理解非齐次线性方程组解的结构及通解的概 念 5 掌握用初等行变换求解线性方程组的方法 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲矩阵的特征值和特征向量的概念 性质相似变换 相似矩 阵的概念及性 质矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值 特征向量及其 相似对角矩阵考试要求1 理解矩阵的特征值和特征向量的概念及性质 会求矩阵的 特 征值和特征向量 2 理解相似矩阵的概念 性质及矩阵可相似对角化的充分必 要条件 掌握 将矩阵化为相似对角矩阵的方法 3 掌握实对称矩阵的特征值和特征向量的性质 六 二次型 考试内容 二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形 和规范形用正交变换和配方法化二次型为 标准形二次型及其矩阵的正定性 考试要求1 掌握二次型及其矩阵表示 了解二次型秩的概念 了解合 同变换与合同矩阵的概念 了解 二次型的标准形 规范形的概念以及 惯性定理 2 掌握用正交变换化二次型为标准形的方 法 会用配方法化 二次型为标准形 3 理解正定二次型 正定矩阵的概念 并掌握其判别法 概率论与数理统计一 随机事件和概率 考试内容 随机事件与样本空间事件的关系与运算 完备事件组概率 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲1 了解样本空间 基本事件空间 的概念 理解随机事件的概 念 掌握事件 的关系及运算 2 理解概率 条件概率的概念 掌握概率的基本性质 会计 算古典型概率和 几何型概率 掌握概率的加法公式 减法公式 乘法 公式 全概率公式 以及贝叶斯 Bayes 公式 3 理解事件独立性的概念 掌握用事件独立性进行概率计算 理解独立重复试验的概 念 掌握计算有关事件概率的方法 二 随机变量及其分布 考试内容 随机变量随机变量分 布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机 变量的分布 随机变量函数的分布 考试要求1 理解随机变量的概念 理解分布函数 的概 念及性质 会计算与随机变量相联系的事件的概率 2 理解离散型随机变量及其概率分布的 概念 掌握0 1 分 布 二项分布 几何分布 超几何分布 泊松 Poisson 分布及其 应用 3 了解泊松定理的结论和应用条件 会用泊松分布近似表示 二项分布 4 理解连续型随机变 量及其概率密度的概念 掌握均匀分 布 正态分布 指数分布及其应用 其中参数为的指 数分布的概 率密度为 5 会求随机变量函数的分布 三 多维随机变量及其分布 考试内容 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲度和条件密度随机变量的独立性和不相关性常用二维随机变量的 分布两 个及两个以上随机变量简单函数的分布考试要求1 理解多维随机变量的概念 理解多维 随机变量的分布的概 念和性质 理解二维离散型随机变量的概率分布 边缘分布和条件分 布 理解二维连续型随机变量的概率密度 边缘密度和条件密度 会 求与二维随机变量相 关事件的概率 2 理解随机变量的独立性及不相关性的概念 掌握随机变量 相互独立的条件 3 掌握二维均匀分布 了解二维正态分布的概率密度 理 解其中参数的概率意义 4 会求两 个随机变量简单函数的分布 会求多个相互独立随 机变量简单函数的分布 四 随机变量 的数字特征 考试内容 随机变量的数学期望 均值 方差 标准差及其性质随机变量函数 的数学期望矩 协方差 相关系数及其性质 考试要求1 理解随机变量数字特征 数学期 望 方差 标准差 矩 协方差 相关系数 的概念 会运用数字特征的基本性质 并掌握 常 用分布的数字特征 2 会求随机变量函数的数学期望 五 大数定律和中心极限定理 考试 内容 切比雪夫 Chebyshev 不等式切比雪夫大数定律伯努利 Bernoulli 大数定律辛钦 Khinchine 大数定律棣莫弗 拉普拉 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲2 了解切比雪夫大数定律 伯努利大数定律和辛钦大数定律 独立同分布 随机变量序列的大数定律 3 了解棣莫弗 拉普拉斯定理 二项分布以正态分布为极限 分布 和列维 林德伯格定理 独立同分布随机变量序列的中心极限定 理 六 数理统计的基本概 念 考试内容 总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分 位数正态总体的常用抽样分布 考试要求1 理解总体 简单随机样本 统计量 样本均值 样本方差 及样本矩的概念 其中样本方差定义为 2 了解分布 分布和分布的概念及性质 了解上侧分位 数的概念并会查表计算 3 了解正态总体的常用抽样分布 七 参数估计 考试 内容 点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计 的概念单个正态总体的均值和方差的 区间估计两个正态总体的均值差和方差比的区间估计 考试要求1 理解参数的点估计 估计量与估计值的概念 2 掌握矩估计法 一阶矩 二阶矩 和最大似然估计法 3 了解估计量的无偏性 有效性 最小方差性 和一致性 相 合性 的概念 并会验证估计量的无偏性 4 理解区间估计的概念 会求单个正态总体的均值和方差 2 2222011 011011011011 考研数学一大纲 考研数学一大纲考研数学一大纲考研数学一大纲 考研数学一大纲显著性检验假设检验的两类错误单个及两个正态总体的 均值和方差的假 设检验考试要求1 理解显著性检验的基本思想 掌握假设检验的基本步骤 了解假设 检验可能产生的两类错误 2 掌握单个及两个正态总体的均值和方差的假设检验 首轮复习中需要注意的问题首轮复习中需要注意的问题首轮复习中需要注意的问题首轮复 习中需要注意的问题 1 注意基本概念 基本方法和基本定理的复习掌握 结合考研 辅导书和大纲 先吃透基本概念 基本方法和基本定理 只有对基本概念深入理解 对基本 定理和公式牢牢记住 才能找到解题的突破口和切入点 分析表明 考生失分的一个重要原 因就是对基本概念 基本定理理解不准确 基本解题方法没有掌握 因此 首轮复习必须在 掌握和理解数学基本概念 基本定理 重要的数学原理 重要的数学结论等数学基本要素上 下足工夫 如果不打牢这个基础 其他一切都是空中楼阁 2 加强练习 充分利用历年真 题 重视总结 归纳解题思路 方法和技巧 数学考试的所有任务就是解题 而基本概念 公式 结论等也只有在反复练习中才能真正理解和巩固 试题千变万化 但其知识结构却基 本相同 题型也相对固定 一般存在相应的解题规律 通过大量的训练可以切实提高数学的 解题能力 做到面对任何试题都能有条不紊地分析和计算 3 开始进行综合试题和应用试 题的训练 数学考试中有一些应用到多个知识点的综合性试题和应用型试题 这类试题一般 比较灵活 难度相对较大 在首轮复习期间 虽然它们不是重点 但也应有目的地进行一些 训练 积累解题经验 这也有利于对所学知识的消化吸收 彻底弄清有关知识的纵向与横向 联系 转化为自己的东西 二 复习进度表 建议学习时间 每天早上 8 30 11 30 可根 据自身情况适当调整 但此时效果最好 需要注意的是 数学复习一定要和做一定量的习 题相结合起来 所以我们在制定计划时都留出了比较多的时间来做习题 注意 每天至少 应该花 2 5 3 个小时来复习数学 这样才能保证在三个月内把整个数学的基础知识复习完 其中用 1 5 2 个小时左右的时间理解掌握概念 定义等 用一个小时左右来做习题巩固 对于数学基础较差的同学建议每天再加一个小时的复习时间用来做习题并总结 以上所提 供的学习计划仅供参考 对于每天的学习时间 你可以根据自己的习惯自行调整 但是要 求保持每两周和我们计划内容相同 第一阶段夯实基础 全面复习 3 月 8 月 主要目 标 吃透考研大纲的要求 做到准确定位 事无巨细地对大纲涉及到的知识点进行地毯式的 复习 夯实基础 训练数学思维 掌握一些基本题型的解题思路和技巧 为下一个阶段的题 型突破做好准备 从历年试卷的内容分布上可以看出 凡是考试大纲中提及的内容 都 有可能考到 甚至某些不太重要的内容也可以以大题的形式在试题中出现 由此可见 任何 的投机取巧到头来只会坑害自己 明智的做法应当是参照考试大纲 全面复习 不留遗漏 因此我们复习的主要思路就是以考纲为纲 先把数学课本从头到尾认真地学习一遍 主要先 不针对重点和难点 而是一视同仁地对照课本和辅导资料对知识点进行事无巨细的复习 对 一些重要的概念 公式要进行理解基础上的记忆 顺便做一些比较简单的习题 这些课后习 题和辅导资料习题对于总结一些相关的解题技巧很有帮助 同时也有助于知识点的回忆和巩 固 大家可以看到 这一轮的时间占到了总复习时间的一半左右 厚积才能薄发 这一轮的复 习将为我们后面突破题型奠定坚实的基础 根据以上的思路 这一轮我们使用以下复习模式 考生可以根据实际情况选用 选用原则可以参照资料选择部分的建议 复习中注意几个 问题 1 强调学习而不是复习对于大部分同学而言 由于高等数学学习的时间比 较早 而且原来学习所针对的难度并不是很大 加上遗忘 现在数学知识恐怕已经所剩无几 了 所以 这一遍强调学习 要拿出重新学习的劲头亲自动手去做 去思考 2 复习 顺序的选择问题要提一点就是数学含三门 可能会学完概率忘了微积分 学完了线代又 忘了概率 所以要重复复习 要逐渐缩短这种循环周期 我们并不主张三门课齐头并进 毕 竟三门课有所区别 要学一门就先学精了再继续推进 做成 夹生饭 会让你有种骑虎难下的 感觉 到时你反而会耗费更多的时间去收拾烂摊子 至于三门课的顺序 大家可以根据自己 的情况选择 3 要注意细致深入学习的过程中一定要力求全部理解和掌握知识点 考试大纲因为不是按照课本的章节次序来的 所以可以先学习一段时间之后再比照大纲对知 识点的复习情况进行评估 4 大纲的问题因为考试大纲和数学考试分析出版得比 较晚 但是历年来 由于考察的连贯性 大纲的变动并不是很大 所以 这个时候我们可以 参照往年的大纲进行知识点的复习 等到七八月份新大纲出来的时候 我们可以比对一下 再补充复习 5 强调积极主动地亲自参与 并整理出笔记 注意一定要在学习过程中 写出自己的感受 可以在书上以题注的形式或者就是做笔记 尽量深挖例题内涵 这一点很 重要 并且要贯彻前三轮的复习 如果最后一轮复习我们有了自己整理的笔记 就会很轻松 有同学说学习线性代数最好的办法就是亲自推导 这话很有道理 事实上如果我们学习什么 知识都采取这种态度的话 那肯定都会学得非常好 第二阶段熟悉题型 前后贯通 8 月 10 月 主要目标 熟悉考研题型 加强知识点的前后联系 分清重难点 让复习周 期尽量缩短 把握整体的知识体系 熟练掌握定理公式和解题技巧 经过上一轮的复习 我们对知识点已经有了一个相当的把握 不过存在的一个问题就是知识点比较孤立 之间的 联系不强 而且复习中往往有遗忘 这些都不可怕 因为我们前面 工作都很投入 现在回头再重新找回原来的状态应该花不了太长时间 而且如果真的忘得比 较严重 反而说明在相关的知识点上我们本身就存在不足 这也可以为我们是否进行针对复 习提供依据 考试大纲对内容的要求有理解 了解 知道三个层次 对方法的要求有掌 握 会 能 两个层次 一般地说 要求理解的内容 要求掌握的方法 是考试的重点 在 历年考试中 这方面考题出现的概率较大 在同一份试卷中 这方面试题所占有的分数也较 多 猜题 的人 往往要在这方面下功夫 一般说来 也确能猜出几分 但遇到在主要内容 中包含着次要内容的综合题时 猜题 便行不通了 我们讲的突出重点 不仅要在主要内容 和方法上多下功夫 更重要的是去寻找重点内容与次要内容间的联系 以主带次 用重点内 容提挈整个内容 主要内容理解透了 其他的内容和方法迎刃而解 即抓出主要内容不是放 弃次要内容而孤立主要内容 而是从分析各内容的联系中 从比较中 自然地突出主要内容 复习模式 进行归纳与总结 一定要记录下自己在做题和理解中所犯的错误和心得 以 备在考前一周大脑全程再现 有些错误是带有习惯性的 你当时更正了 时间一长就忘 考 试时就容易再犯 考生应该按照辅导书全面地熟悉考研题型 上面给出的参考书都有详 细解答 甚至解答就在题目的正下方 我们要求考生自主答题 一定要先自己做出来再根据 答案修正 有的参考书有少量错误 所以考生不要盲目信从答案 要坚定自己的信心 学习 数学 我们不主张 题海 战术 而是提倡精练 即反复做一些典型的题 做到一题多解 一 题多变 要训练抽象思维能力 对一些基本定理的证明 基本公式的推导 以及一些基本练 习题 要做到不用书写 只需用脑子默想 即能得到正确答案 就象棋手下 盲棋 一样 这 样才叫训练有素 熟能生巧 基本功扎实的人 遇到难题办法也多 不易被难倒 相反 做练习时 眼高手低 总找难题作 结果 上了考场 遇到与自己曾经做过的类似的题目都 有可能不会 不少考生把会做的题算错了 将其归结为粗心大意 确实 人会有粗心的 但 基本功扎实的人 出了错立即就会发现 很少会 粗心 地出错 重点内容 数学复习的 这个阶段一定要重心后移 这是因为数学的考点 重点 难点大部分均在每本书的中间或最 后几章 命制的综合题和大题也多数是在后面几章出现 数学一中 高等数学的考试重点在 定积分 重积分 线面积分 无穷级数等章 而数学二 三 四的高等数学部分的考试重点 在微分中值定理 定积分等后面几章 线性代数最重要是向量的线性相关性 线性方程组 特征值与特征向量 二次型与正定矩阵等内容 这几章题型变化多 知识点的衔接与转换非 常集中 便于命制综合题 概率统计复习的重点是一维随机变量及其分布后面的几章 在复 习高等数学时 一定要把极限论 微分学和积分学有机地结合起来 前后贯穿 灵活运用 在复习线性代数时 一定要以线性方程组为核心 前后融会贯通 灵活运用所学知识来分析 问题和解决问题 不要将它们孤立割裂开来 比如行列式 矩阵 向量 线性方程组是线性 代数的基本内容 它们不是孤立割裂的 而是相互渗透 紧密联系的 在复习概率统计时 考生要灵活运用所学知识 建立正确的概率模型 综合运用极限 连续 导数 积分 广义 积分 二重积分以及级数等知识去分析和解决实际问题 提高解综合题的能力 第三阶段查缺补漏 模拟训练 11 月 12 月 15 号 主要目标 利用套题对前面的复习做 一个总体的检验 练习答题规范 保持卷面整洁 增加信心 练习掌握考试时间的分配 增 强临场应变的能力 要对自己前两个阶段复习中出现含糊不清 掌握不牢的地方重点加强 经过上面两轮的准备 考生的能力和思维储备已经足够应付考研试题了 在这个阶段里 考 生应该开始进行模拟试题或者真题的实战演练 在这个过程中 注意答卷时间的分配 重视 考场心态的调整 无论自己的模拟考试成绩如何 都要保持良好的心态 分数考高了 不要 洋洋自得 毕竟真实的考场上压力和环境都和平时不太一样 分数考低了 也别灰心丧气 认真总结经验教训 况且一般来说模拟题都要难于真题 注意问题 这个阶段的复习 中我们需要特别注意的一点就是对真题答题规范的研究 因为考试题量大 时间紧 很多同 学都会有时间不够的感觉 再次强调研究真题主要是针对整张试卷和答题规范的把握 按照 规范 需要写的不要落掉 不需要写的 我们争取不写 这样的话 一方面我们可以节省时 间 另一方面可以规范我们的思路 只有平时养成良好的习惯 考试的时候才能做到心中有 数 不至于惊慌失措 由于真题有限 所以我们应该重复这个训练过程 直到我们对自己满 意了为止 第二个问题就是要做好总结与归纳 好的例题 自己犯错的地方 新的解法 都要全部记录下来 在这个阶段基本上没有什么不会的知识点了 但问题就是知识点还比较 乱 还有对个别知识点的理解 解法还没有完全把握 这时候没有什么书能够帮助你 只有 自己一点一点地记录 总结和归纳 第四阶段强化记忆 保持状态 12 月 15 日 考试 主 要目标 强化记忆 调整心态 保持状态 积极应考 由于长时间较为艰苦的复习 到了 最后时刻的复习阶段 考生心理和生理都难免会感到疲惫 而此时恰恰是复习最关键的时候 这个时候我们原来书页的空白处还有笔记本上总结的东西就有大用了 因为是自己的总结 所以看这些东西 对我们自己而言更有针对性 让我们可以很快地恢复状态 加深记忆 在 此基础上 最好按照考试时间去做一些强度不太大的模拟题或者已经作过的真题 让自己保 持手感 在一个良好的复习心态下积极备考 是最后的复习阶段中至关重要的 高等数学 第一章 函数与极限 10 天 微积分中研究的对象是函数 函数概念的实质是变量 之间确定的对应关系 极限是微积分的理论基础 研究函数实质上是研究各种类型极限 无 穷小就是极限为零的变量 极限方法的重要部分是无穷小分析 或说无穷小阶的估计与分析 我们研究的对象是连续函数或除若干点外是连续的函数 日期学习时间 复习知识点与对 应习题 大纲要求第一周 第二周 2 5 3 5 小时 函数的概念 常见的函数 有界函数 奇函数与偶函数 单调函数 周期函数 复合函数 反函数 初等函数具体概念和形式 习 题 1 1 4 5 7 8 9 13 15 18 1 理解函数的概念 掌握函数的表示法 会建立应 用问题的函数关系 2 了解函数的有界性 单调性 周期性和奇偶性 3 理解复合函数 及分段函数的概念 了解反函数及隐函数的概念 4 掌握基本初等函数的性质及其图形 了解初等函数的概念 5 理解极限的概念 理解函数左极限与右极限的概念以及函数极限存 在与左 右极限之间的关系 6 掌握极限的性质及四则运算法则 7 掌握极限存在的两个 准则 并会利用它们求极限 掌握利用两个重要极限求极限的方法 8 理解无穷小量 无 穷大量的概念 掌握无穷小量的比较方法 会用等价无穷 2 5 3 5 小时 数列定义 数列极 限的性质 唯一性 有界性 保号性 P26 例 1 例 2 P27 例 3 习题 1 2 1 3 4 5 6 2 5 3 5 小时 函数极限的基本性质 不等式 性质 极限的保号性 极限的唯一性 函数极限 的函数局部有界性 函数极限与数列极限的关系等 P33 例 4 例 5 P35 例 7 习题 1 3 1 2 4 6 7 8 2 5 3 5 小时 无穷小与无穷大的定义 它们之间的关系 以及与极限的关系习 题 1 4 1 2 4 5 6 7 2 5 3 5 小时 极限的运算法则 6 个定理以及一些推论 P46 例 3 例 4 P47 例 6 习题 1 5 1 2 3 2 5 3 5 小时 两个重要极限 要牢记在心 要注意极限 成立的条件 不要混淆 应熟悉等价表达式 函数极限的存在问题 夹逼定理 单调有界 数列必有极限 利用函数极限求数列极限 利用夹逼法则求极限 求递归数列的极限 P51 例 1 习题 1 6 1 2 4 小量求极限 9 理解函数连续性的概念 含左连续与右连 续 会判别函数间断点的类型 10 了解连续函数的性质和初等函数的连续性 理解闭区 间上连续函数的性质 有界性 最大值和最小值定理 介值定理 并会应用这些性质 2 5 3 5 小时 无穷小阶的概念 同阶无穷小 等价无穷小 高阶无穷小 k 阶无穷小 重要 的等价无穷小 尤其重要 一定要烂熟于心 以及它们的重要性质和确定方法 P57 例 1 P58 例 5 习题 1 7 1 2 3 4 2 5 3 5 小时 函数的连续性 间断点的定义与分类 第 一类间断点与第二类间断点 判断函数的连续性 连续性的四则运算法则 复合函数的连 续性 反函数的连续性 和间断点的类型 例 1 例 5 习题 1 8 2 3 4 5 2 5 3 5 小时 连续函数的运算与初等函数的连续性 包括和 差 积 商的连续性 反函数与复合函数的连续性 初等函数的连续性 例 4 例 8 习题 1 9 1 2 3 4 5 2 5 3 小时 理解闭区间上连续 函数的性质 有界性与最大值最小值定理 零点定理与介值定理 零点定理对于证明根的存在 是非常重要的一种方法 例 1 例 2 习题 1 10 1 2 3 4 5 3 5 小时 总复习题一 1 2 8 9 10 11 12 第二章 导数与微分 7 天 一元函数的导数是一类特殊的函数极限 在几何上函数的导数 即曲线的切线的斜率 在力学上路程函数的导数就是速度 导数有鲜明的力学意义和几何意 义以及物理意义 函数的可微性是函数增量和自变量增量之间关系的另一种表达形式 函数 微分是函数增量的线性主要部分 日期 学习时间 复习知识点与对应习题 大纲要求第二 周 第三周 2 5 3 5 小时 导数的定义 几何意义 力学意义 单侧与双侧可导的关系 可 导与连续之间的关系 非常重要 经常会出现在选择题中 函数的可导性 导函数 奇偶函 数与周期函数的导数的性质 按照定义求导及其适用的情形 利用导数定义求极限 会求平 面曲线的切线方程和法线方程 例 3 例 7 习题 2 1 6 7 9 11 14 15 16 17 1 理 解导数和微分的概念 理解导数与微分的关系 理解导数的几何意义 会求平面曲线的切线 方程和法线方程 了解导数的物理意义 会用导数描述一些物理量 理解函数的可导性与连 续性之间的关系 2 掌握导数的四则运算法则和复合函数的求导法则 掌握基本初等函数 的导数公式 了解微分的四则运算法则和一阶微分形式的不变性 会求函数的微分 3 了 解高阶导数的概念 会求简单函数的高阶导数 4 会求分段函数的导数 会求隐函数和由 参数方程所确定的函数以及反函数的导数 2 5 3 5 小时 复合函数求导法 求初等函数 的导数和多层复合函数的导数 由复合函数求导法则导出的微分法则 幂 指数函数求导 法 反函数求导法 分段函数求导法 例 例 17 习题 2 2 2 3 4 7 8 9 1012 2 5 3 5 小时 高阶导数和 N 阶导数的求法 归纳法 分解法 用莱布尼兹法则 例 1 例 7 习 题 2 3 2 3 4 7 8 9 2 5 3 5 小时 由参数方程确定的函数的求导法 变限积分的求 导法 隐函数的求导法 例 1 例 10 习题 2 4 2 4 7 8 9 11 2 5 3 5 小时 函数微 分的定义 微分运算法则 一元函数微分学的简单应用 例 1 例 6 习题 2 5 1 2 3 4 5 6 2 5 3 5 小时 总复习题二 1 2 3 5 6 9 11 13 第三章 微分中值定理与导数的应用 8 天 连续函数是我们研究的基本对象 函数的许 多其他性质都和连续性有关 在理解有关定理的基础上可以利用导数判断函数单调性 凹凸 性和求极值 拐点 并体现在作图上 微分学的另一个重要应用是求函数的最大值和最小值 日期 学习时间 复习知识点与对应习题 大纲要求第三周 第四周 2 5 3 5 小时 微分中 值定理及其应用 费马定理及其几何意义 罗尔定理及其几何意义 拉格朗日定理及其几何 意义 柯西定理及其几何意义 例 1 习题 3 1 1 15 5 理解并会用罗尔 Rolle 定理 拉格朗日 Lagrange 中值定理和泰勒 Taylor 定理 了解并会用柯西 Cauchy 中值定理 6 掌握用洛必达法则求未定式极限的方法 7 理解函数的极值概念 掌握用导数判断函数的 单调性和求函数极值的方法 掌握函数最大值和最小值的求法及其应用 8 会用导数判 断函数图形的凹凸性会求函数图形的拐点以及水平 铅直和斜渐近线 会描绘函数的图形 9 了解曲率 曲率圆与曲率半径的概念 会计算曲率和曲率半径 2 5 3 5 小时 洛比达 法则及其应用 例 1 例 10 习题 3 2 1 4 2 5 3 5 小时 泰勒中值定理 麦克劳林展开 式 例 1 例 3 习题 3 3 1 7 10 2 5 3 5 小时 求函数的单调性 凹凸性区间 极值点 拐点 渐进线 选择题及大题常考 例 1 例 12 习题 3 4 4 5 8 9 11 12 14 2 5 3 5小时 函数的极值 一个必要条件 两个充分条件 最大最小值问题 函数性的最值和应用 性的最值问题 与最值问题有关的综合题 例 1 例 6 习题 3 5 1 4 5 6 7 10 11 14 2 5 3 5 小 时 简单了解利用导数作函数图形 一般出选择题及判断图形题 对其中的渐进线和间断点 要熟练掌握 一元函数的最值问题 三种情形 例 1 例 3 习题 3 6 1 5 2 5 总结本章 知识点 总复习题三 1 12 19 小时第四章 不定积分 7 天 积分学是微积分的主要部分之一 函数积分学包括不定 积分和定积分两部分 在积分的计算中 分项积分法 分段积分法 换元积分法和分部积分 法是最基本的方法 日期 学习时间 复习知识点与对应习题 大纲要求第四周 第五周 2 5 3 5 小时 原函数与不定积分的概念与基本性质 它们各自的定义 之间的关系 求不 定积分与求微分或导数的关系 基本的积分公式 原函数的存在性 原函数的几何意义和 力学意义例 1 例 16 习题 4 1 1 1 理解原函数的概念 理解不定积分和定积分的概念 2 掌握不定积分的基本公式 掌握不定积分和定积分的性质及定积分中值定理 掌握换元 积分法与分部积分法 3 会求有理函数 三角函数有理式和简单无理函数的积分 4 理解积分上限的函数 会求它的导数 掌握牛顿 莱布尼茨公式 5 了解反常积分的概念 会计算反常积分 2 5 3 5 小时 不定积分的换元积分法 第二类换元法 例 1 例 27 2 5 3 5 小时 不定积分的计算 习题 4 2 2 1 20 2 5 3 5 小时 不定积分的计算 习题 4 2 2 21 40 2 5 3 5 小时 不定积分的分部积分法 例 1 例 10 习题 4 3 1 20 2 5 3 5 小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论