已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年高考数学(理)一轮经典例题曲线和方程典型例题一例1 如果命题“坐标满足方程的点都在曲线上”不正确,那么以下正确的命题是(a)曲线上的点的坐标都满足方程(b)坐标满足方程的点有些在上,有些不在上(c)坐标满足方程的点都不在曲线上(d)一定有不在曲线上的点,其坐标满足方程分析:原命题是错误的,即坐标满足方程的点不一定都在曲线上,易知答案为d典型例题二例2 说明过点且平行于轴的直线和方程所代表的曲线之间的关系分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可其中“曲线上的点的坐标都是方程的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则解:如下图所示,过点且平行于轴的直线的方程为,因而在直线上的点的坐标都满足,所以直线上的点都在方程表示的曲线上但是以这个方程的解为坐标的点不会都在直线上,因此方程不是直线的方程,直线只是方程所表示曲线的一部分说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性典型例题三例3说明到坐标轴距离相等的点的轨迹与方程所表示的直线之间的关系分析:该题应该抓住“纯粹性”和“完备性”来进行分析解:方程所表示的曲线上每一个点都满足到坐标轴距离相等但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程,例如点到两坐标轴的距离均为3,但它不满足方程因此不能说方程就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程所表示的轨迹说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线典型例题四例4 曲线与直线有两个不同的交点,求的取值范围有一个交点呢?无交点呢?分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于的一元二次方程的判别式分别满足、解:由得当即,即时,直线与曲线有两个不同的交点当即,即或时,直线与曲线有一个交点当即,即或时,直线与曲线没有公共点说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数与由两方程联立所整理出的关于(或)的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析典型例题五例5 若曲线与有两个公共点,求实数的取值范围分析:将“曲线有两个公共点”转化为“方程有两个不同的解”,从而研究一元二次方程的解的个数问题若将两条曲线的大致形状现出来,也许可能得到一些启发解法一:由得:,即要使上述方程有两个相异的非负实根则有:又解之得:所求实数的范围是解法二:的曲线是关于轴对称且顶点在原点的折线,而表示斜率为1且过点的直线,由下图可知,当时,折线的右支与直线不相交所以两曲线只有一个交点,当时,直线与折线的两支都相交,所以两条直线有两个相异的交点说明:这类题较好的解法是解法二,即利用数形结合的方法来探求若题设条件中“”改为呢,请自己探求典型例题六例6 已知,其中,则角平分线的方程是(如下图),对吗?分析:本题主要考查曲线方程概念掌握和理解的程度,关键是理解三角形内角平分线是一条线段解:不对,因为内角平分线是一条线段,而方程的图形是一条直线如点坐标适合方程,但点不在内角的平分线上综合上述内角平分线为:说明:判断曲线的方程或方程的曲线,要紧扣定义,两个条件缺一不可,关键是要搞清楚曲线的范围典型例题七例7 判断方程所表示的曲线分析:根据方程的表面形式,很难判断方程的曲线的形状,因此必需先将方程进行等价变形解:由原方程可得:,即方程的曲线是两条射线,如图所示:说明:判断方程表示的曲线,在化简变形方程时要注意等价变形如方程等价于且,即,原方程的曲线是抛物线一部分典型例题八例8 如图所示,已知、是两个定点,且,动点到定点的距离是4,线段的垂直平分线交线段于点,求动点的轨迹方程分析:本题首先要建立适当直角坐标系,动点满足的条件(等量关系)题设中没有明显给出,要从题意中分析找出等量关系连结,则,由此,即动点到两定点,距离之和为常数解:过,两点的直线为轴,两点的中点为坐标原点,建立直角坐标系,两点坐标分别为,连结垂直平分线段,设点,由两点距离公式得,化简方程,移项两边平方得(移项)两边再平方移项得:,即为所求点轨迹方程说明:通过分析题意利用几何图形的有关性质,找出点与两定点,距离之和为常数,是解本题的关键方程化简过程也是很重要的,且化简过程也保证了等价性典型例题九例9过点作两条互相垂直的直线,若交轴于,交轴于,求线段中点的轨迹方程oaxpyb图m解:连接,设,则, 为直角三角形由直角三角形性质知即化简得的轨迹方程为说明:本题也可以用勾股定理求解,还可以用斜率关系求解,因此本题可有三种解法用斜率求解的过程要麻烦一些 典型例题十例10 求与两定点、满足(是常数)的动点的轨迹方程分析:按求曲线方程的方法步骤求解解法一:如图甲,取两定点和的连线为轴,过的中点且与垂直的直线为轴建立坐标系设,则:,据题意,有得由于是常数,且,所以为动点的轨迹方程,即动点的轨迹是一条平行于轴的直线解法二:如图乙,取与两点连线为轴,过点且与垂直的直线为轴建立坐标系设,则:,据题意,有,得,即动点的轨迹方程为,它是平行于轴的一条直线解法三:如图丙建立坐标系,设,则,据题意,有,整理后得到点的轨迹方程为:,它是一条直线说明:由上面介绍的三种解法,可以看到对于同一条直线,在不同的坐标系中,方程不同,适当建立坐标系如解法一、解法二,得到的方程形式简单、特性明显,一看便知是直线而解法三得到的方程烦琐、冗长,若以此为基础研究其他问题,会引起不必要的麻烦因此,在求曲线方程时,根据具体情况适当选取坐标系十分重要另外,也要注意到本题所求的是轨迹的方程,在作解答表述时应强调曲线的方程,而不是曲线典型例题十一例11 两直线分别绕着定点和()在平面内转动,且转动时保持相互垂直,求两直线的交点的轨迹方程分析:建立适当的直角坐标系,利用直角三角形的性质,列出动点所满足的等式解:取直线为轴,取线段的中点为原点建立直角坐标系,则:,属于集合设,则,化简得这就是两直线的交点的轨迹方程说明:本题易出现如下解答错误:取直线为轴,取线段的中点为原点建立直角坐标系,则:,交点属于集合设,则,故,即()要知道,当轴且另一直线与轴重合时,仍有两直线互相垂直,此时两直线交点为同样轴重合时,且另一直线与轴仍有两直线互相垂直,此时两直线交点为因而,与应为所求方程的解纠正的方法是:当或的斜率不存在时,即时,和也在曲线上,故所求的点的轨迹方程是求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解为坐标的点作考察,既要剔除不适合的部分,也不要遗漏满足条件的部分典型例题十二例12 如图,的两条直角边长分别为和,与两点分别在轴的正半轴和轴的正半轴上滑动,求直角顶点的轨迹方程分析:由已知是直角,和两点在坐标轴上滑动时,也是直角,由平面几何知识,、四点共圆,则有,这就是点满足的几何条件由此列出顶点的坐标适合的方程解:设点的坐标为,连结,由,所以、四点共圆从而由,有,即注意到方程表示的是过原点、斜率为的一条直线,而题目中的与均在两坐标轴的正半轴上滑动,由于、为常数,故点的轨迹不会是一条直线,而是直线的一部分我们可考察与两点在坐标轴上的极端位置,确定点坐标的范围如下图,当点与原点重合时,所以如下图,当点与原点重合时,点的横坐标由射影定理,即,有由已知,所以故点的轨迹方程为:()说明:求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解为坐标的点作考察,剔除不适合的部分典型例题十三例13 过点作两条互相垂直的直线、,若交轴于,交轴于,在线段上,且,求点的轨迹方程分析:如图,设,题中几何条件是,在解析几何中要表示垂直关系的代数关系式就是斜率乘积为1,所以要求的轨迹方程即、之间的关系,首先要把、的斜率用、表示出来,而表示斜率的关键是用、表示、两点的坐标,由题可知是、的定比分点,由定比分点坐标公式便可找出、坐标之间的关系,进而表示出、两点的坐标,并求出点的轨迹方程解:设,在线段上,且分所成的比是,由,得,、又,的斜率,的斜率,化简得:说明:本题的上述解题过程并不严密,因为需在时才能成立,而当时,的方程为所以的方程是故,可求得,而也满足方程故所求轨迹的方程是这类题在解答时应注意考虑完备性和纯粹性典型例题十四例14 如图,已知两点,以及一直线,设长为的线段在直线上移动求直线和的交点的轨迹方程分析1:设,题中的几何条件是,所以只需用表示出、两点的坐标,便可求出曲线的方程,而要表示点坐标可先找出、两点坐标的关系,显然、三点共线这样便可找出、坐标之间的关系,进而表示出的坐标,同理便可表示出的坐标,问题便可以迎刃而解解法一:设、由、三点共线可得:(利用与斜率相等得到)由、三点共线可得又由得,化简和所求轨迹方程为:分析2:此题也可以先用、三点共线表示出点坐标,再根据表示出点坐标,然后利用、三点共线也可求得轨迹方程解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢制门招标文件的简明和易懂性
- 清洁合同物业保洁
- 池河镇七年级历史下册 第三单元 明清时期:统一多民族国家的巩固与发展 第20课 清朝君主专制的强化教案 新人教版
- 2024年九年级语文上册 第四单元 诗词诵读《水调歌头》教案 鄂教版
- 八年级英语上册 Unit 5 My Future Lesson 26 What Will I Be教案 (新版)冀教版
- 2024年学年八年级道德与法治下册 第二单元 理解权利义务教案 新人教版
- 江苏省江阴市高中生物 第三章 细胞的基本结构 3.1 细胞膜-系统的边界教案 新人教版必修1
- 钻孔机租赁合同(2篇)
- 租车退车合同(2篇)
- 苏教版音乐课件
- 劳务施工组织方案 劳务施工组织设计(八篇)
- 理论催化剂体积计算
- 铁路运输调度指挥
- YS/T 950-2014散装红土镍矿取制样方法
- GB/T 324-2008焊缝符号表示法
- GB/T 2980-2018工程机械轮胎规格、尺寸、气压与负荷
- GB/T 16491-1996电子式万能试验机
- 运输公司系统平台建设、维护及管理制度
- 第七章 欧拉方程
- 五大领域教学法(课堂PPT)
- 数控车床编程基本学习培训课件
评论
0/150
提交评论