高考数学一轮复习课时检测 第七章 第六节 空间向量及其运算 理.doc_第1页
高考数学一轮复习课时检测 第七章 第六节 空间向量及其运算 理.doc_第2页
高考数学一轮复习课时检测 第七章 第六节 空间向量及其运算 理.doc_第3页
高考数学一轮复习课时检测 第七章 第六节 空间向量及其运算 理.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章 第六节 空间向量及其运算一、选择题1已知向量a(8,x,x),b(x,1,2),其中x0.若ab,则x的值为 ()a8 b4c2 d0解析:ab且x0存在0,使ab(8,x,x)(x,2)答案:b2已知a(2,1,3),b(1,4,2),c(7,5,),若a、b、c三个向量共面,则实数等于 ()a. b.c. d.解析:由于a,b,c三个向量共面,所以存在实数m,n使得cmanb,即有,解得m,n,.答案:d3.如图,已知空间四边形的每条边和对角线长都等于a,点e、f、g分别为ab、ad、dc的中点,则a2等于 ()a2 b2 c2 d2 解析:2 2aacos60a2.答案:b4.(2012济宁模拟)已知空间四边形oabc,其对角线为ob、ac,m、n分别是边oa、cb的中点,点g在线段mn上,且使mg2gn,则用向量 , , 表示向量 正确的是 ()a b c d 解析: ( ) .答案:c5有以下命题:如果向量a,b与任何向量不能构成空间的一个基底,那么a,b的关系是不共线;o,a,b,c为空间四点,且向量 , , 不构成空间的一个基底,那么点o,a,b,c一定共面;已知a,b,c是空间的一个基底,则ab,ab,c也是空间的一个基底其中正确的命题是 ()a bc d解析:对于,“如果向量a,b与任何向量不能构成空间向量的一个基底,那么a,b的关系一定是共线”,所以错误正确答案:c6.(2012武汉模拟)二面角l为60,a、b是棱l上的两点,ac、bd分别在半平面、内,acl,bdl,且abaca,bd2a,则cd的长为 ()a2a b.aca d.a解析:acl,bdl, , 60,且 0, 0, ,| |2a.答案:a二、填空题7若向量a(1,2),b(2,1,1),a,b夹角的余弦值为,则_.解析:cosa,b,解得1.答案:18.已知空间四边形oabc,点m、n分别是oa、bc的中点,且 a, b, c,用a,b,c表示向量 _.解析:如图, ( )( )( )( 2 )( )(bca)答案:(bca)9给出命题:若a与b共线,则a与b所在的直线平行;若a与b共线,则存在唯一的实数,使ba;若a,b,c三点不共线,o是平面abc外一点, ,则点m一定在平面abc上,且在abc的内部其中真命题是_解析:中a与b所在的直线也有可能重合,故是假命题;中当a0,b0时,找不到实数,使ba,故是假命题;可以证明中a,b,c,m四点共面,因为 ,等式两边同时加上 ,则( )( )( )0,即 0, ,则 与 , 共面,又m是三个有向线段的公共点,故a,b,c,m四点共面,所以m是abc的重心,所以点m在平面abc上,且在abc的内部,故是真命题答案:三、解答题10设a(a1,a2,a3),b(b1,b2,b3),且ab,记|ab|m,求ab与x轴正方向的夹角的余弦值解:取x轴正方向的任一向量c(x,0,0)(x0),设所求夹角为,(ab)c(a1b1,a2b2,a3b3)(x,0,0)(a1b1)x,cos .故ab与x轴正方向的夹角的余弦值为.11.如图所示,已知空间四边形abcd的各边和对角线的长都等于a,点m、n分别是ab、cd的中点(1)求证:mnab,mncd;(2)求mn的长解:(1)证明:设 p, q, r.由题意可知,|p|q|r|a,且p、q、r三向量两两夹角均为60. ( ) (qrp), (qrp)p(qprpp2)(a2cos 60a2cos 60a2)0.mnab.同理可证mncd.(2)由(1)可知 (qrp),| |2 2(qrp)2q2r2p22(qrpqrp)a2a2a22()2a2.| |a.mn的长为a.12直三棱柱abcabc中,acbcaa,acb90,d、e分别为ab、bb的中点(1)求证:cead;(2)求异面直线ce与ac所成角的余弦值解:(1)证明:设 a, b, c,根据题意,|a|b|c|且abbc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论