免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
神经网络自适应控制的原理自适应控制是一种特殊的反馈控制,它不是一般的系统状态反馈或输出反馈,即使对于现行定常的控制对象,自适应控制亦是非线性时变反馈控制系统。这种系统中的过程状态可划分为两种类型,一类状态变化速度快,另一类状态变化速度慢。慢变化状态可视为参数,这里包含了两个时间尺度概念:适用于常规反馈控制的快时间尺度以及适用于更新调节参数的慢时间尺度,这意味着自适应控制系统存在某种类型的闭环系统性能反馈。原理图如下: 图2-7 自适应控制机构框图人工神经网络(简称ANN)是也简称为神经网络(NNS)或称作连接模型,是对人脑或自然神经网络若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型。目前在神经网络研究方法上已形流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:(1)利用神经生理与认知科学研究人类思维以及智能机理。(2)利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论。应用研究可分为以下两类:(1)神经网络的软件模拟和硬件实现的研究。(2)神经网络在各个领域中应用的研究。神经网络具有以下.特点:(1)能够充分逼近任何复杂的非线性关系;(2)全部定性或定量的信息都均匀分布存在于网络内的各神经元,因此有很强的容错性和鲁棒性;(3)使用并行分布处理的方式,让大量运算成可以快速完成; 神经网络自适应的一般结构 神经网络自适应控制有两种基本结构形式,一种是神网络模型参考自适应控制( NNMRAC),一种是神经网络自校正控制(NNSTC)。神经网络模型参考自适应控制又分为直接型与间接型。结构如图(2 -8)所示。构造一个参考模型使其输出为期望输出,控制的目的是使y跟踪。 (a) 直接型 (b) 间接型图2-8 神经网络模型参考自适应控制结构 由于被控对象特性未知,因此图2-8(b)结构较好,神经网络NNI和NNC分别表示在线辨识器和控制器。NNC的作用是通过在线训练使受控对象输出与参考模型的输出之差最小。由于对象特性未知,给NNC训练造成困难。目前的做法是增加神经网络辨识器NNI,使得在线获得对象动态特性。自校正控制是一种用辨识器将对象参数进行在线估计,用调节器实现参数的自动整定相结合的自适应控制技术,可用于结构已知而参数未知但恒定的随机系统,也可用于结构已知而参数慢时变的随机系统。但传统的自校正控制,是将被控对象用于线性或线性化模型进行辨识,对于复杂的非线性系统的自校正控制,则难以实现。神经网络自校正控制结构如图(2-9)所示 图2-9 神经网络自校正结构它由两个回路组成: (1)自正控制器与被控对象构成的反馈回路。(2)NNI与控制器设计,以得到控制器参数。可见辨识器与自校正控制器的在线设计,是自校正控制实现的关键。2.3.2神经网络模型及算法 人工神经网络是源于人脑神经系统的一类模型,是模拟人类智能的一条重要途径,具有模拟人的部分形象思维的能力。多年来,学者们建立了多种神经网络模型,决定其整体性的三大要素是:( 1) 神经元的特性;( 2) 神经元之间相互连接的形式是拓扑结构;( 3) 为适应环境而改善性能的学习规则。 神经网络是人脑的某种抽象简化和模拟,是具有高度非线性的系统。其物理模型虽有多种。但基本运算可归结为四种: 积与权值学习、阈值处理和非线性函数处理。 从宏观上,一般将神经网络分为四种类型:前馈、反馈、自组织与随机型。神经网络的发展史,概括起来可以说经历了三个阶段:40 60 年代的,发展初期; 70年代的研究低潮;80年代至今,神经网络的理论研究取得突破性进展。多年来神经网络的研究虽已取得了很多成果,但至今尚未建立起一套完整的理论体系。2.4多层前馈网络及BP 算法基于误差反向传播( Error Back Propagation)算法的多层前馈网络(Multiple Layer Feed forward Network)(简称BP网络),可以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。虽然BP神经网络是目前应用最广泛、研究较多的一种网络。但是关于它的开发设计目前为止还没有一套完整的理论。拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层.、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。BP神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。BP网络是有导师的学习,是应用最广泛的一种网络。网络结构如图(2-10)所示。输出变量输入变量输入层隐含层输出层图2-10 BP网络结构图中:表示输入层第个节点的输入,=1,M;表示隐含层第i个节点到输入层第个节点之间的权值;表示隐含层第i个节点的阈值;表示隐含层的激励函数;表示输出层第k个节点到隐含层第i个节点之间的权值,i =1,q;表示输出层第k个节点的阈值, k=1,L;表示输出层的激励函数;表示输出层第k个节点的输出。(1)信号的前向传播过程隐含层第i 个节点的输入neti: (3-1)隐含层第i 个节点的输出yi: (3-2)输出层第k个节点的输入netk: (3-3)输出层第k个节点的输出: (3-4)BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量T,网络输出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都实验中学2025届高三语文第一学期期末综合测试试题含解析
- 辽宁省朝阳市普通高中2025届高三生物第一学期期末考试试题含解析
- 2025届江苏省丹阳市高三生物第一学期期末教学质量检测试题含解析
- 2025届山东省高密市高三数学第一学期期末统考试题含解析
- 2025届南宁市第四十七中学高一数学第一学期期末预测试题含解析
- 2025届贵州毕节市威宁县第八中学高一数学第一学期期末教学质量检测试题含解析
- 2025届上海市宝山区上海大学附中英语高三上期末调研模拟试题含解析
- 2025届湖北省荆门市胡集高中高三英语第一学期期末检测试题含解析
- 2025届重庆市主城区七校生物高一上期末考试模拟试题含解析
- 2025届合肥市第六中学数学高三第一学期期末综合测试试题含解析
- 锅炉质量安全风险管控清单
- 医院电子病历系统应用水平分级评价 4级实证材料基础项
- 二次倒运专项方案
- 脓毒血症护理查房-课件
- 法学专业成绩单
- 砌体结构工程培训课件
- 【国内外研学旅行文献研究综述4700字(论文)】
- 甲状腺结节指南总结
- 某水电站防洪影响评价报告
- 高级政工师职称述职报告
- GB/T 19851.1-2022中小学体育器材和场地第1部分:体育器材的通用要求和试验方法
评论
0/150
提交评论