




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
镇江市实验初级中学2010-2011年度第一学期九年级数学助学案6.3.3二次函数的特殊形式主 备:郭 佳 课 型:新 授 审 核:赵玉霞班级 姓名 【学习目标】1.经历探索二次函数交点式的过程,体会方程与函数之间的联系;2.渗透数形结合的数学思想.【课前自习】1.根据二次函数的图象和性质填表:二 次 函 数对 称 轴 顶 点与坐标轴交点一般式与轴交与点( )顶点式2.用十字相乘法分解因式: 3.若一元二次方程有两实数根,则抛物线与轴交点坐标是 .教师评价家长签字 【课堂助学】一、探索归纳:1.根据课前自习第3题的结果,改写下列二次函数: 2.求出上述抛物线与轴的交点坐标: 坐标: 3.你发现什么?4.归纳: 若二次函数与轴交点坐标是()、(),则该函数还可以表示为 的形式;反之若二次函数是的形式,则该抛物线与轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式.二次函数的图象与轴有2个交点的前提条件是 ,因此这也是 式存在的前提条件.练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. 与轴的交点坐标是: 与轴的交点坐标是: 二、典型例题:例1.已知二次函数的图象与轴的交点坐标是(3,0),(1,0),且函数的最值是3.求对称轴和顶点坐标.在下列平面直角坐标系中画出它的简图. 求出该二次函数的关系式.若二次函数的图象与轴的交点坐标是(3,0),(-1,0),则对称轴是 ; 若二次函数的图象与轴的交点坐标是(-3,0),(1,0),则对称轴是 ;若二次函数的图象与轴的交点坐标是(-3,0),(-1,0),则对称轴是 .归纳:若抛物线与轴的交点坐标是()、()则,对称轴是 ,顶点 坐标是 .【拓展提升】已知二次函数的图象与轴的交点坐标是(-3,1),(1,1),且函数的最值是4.求对称轴和顶点坐标.在下列平面直角坐标系中画出它的简图. 求出该二次函数的关系式.归纳:已知A、B是抛物线上一对对称点,且A点坐标是()、B点坐标是()则,对称轴是 ,顶点 坐标是 .【课堂检测】1.已知一条抛物线的开口大小、方向与均相同,且与轴的交点坐标是(2,0)、(-3,0),则该抛物线的关系式是 .2.已知一条抛物线与轴有两个交点,其中一个交点坐标是(-1,0)、对称轴是直线,则另一个交点坐标是 .3.已知一条抛物线与轴的两个交点之间的距离为4,其中一个交点坐标是(0,0)、则另一个交点坐标是 ,该抛物线的对称轴是 .4.二次函数与轴的交点坐标是 ,对称轴是 . 5.请写出一个二次函数,它与轴的交点坐标是(-6,0)、(-3,0): .6.已知二次函数的图象与轴的交点坐标是(-1,0),(5,0),且函数的最值是3.求出该二次函数的关系式.(用2种方法)解法1: 解法2:教师评价【课外作业】1.已知一条抛物线的开口大小、方向与均相同,且与轴的交点坐标是(-2,0)、(-3,0),则该抛物线的关系式是 .2.已知一条抛物线的形状与相同,但开口方向相反,且与轴的交点坐标是(1,0)、(4,0),则该抛物线的关系式是 .3.已知一条抛物线与轴的两个交点之间的距离为3,其中一个交点坐标是(1,0)、则另一个交点坐标是 ,该抛物线的对称轴是 .4.二次函数与轴的交点坐标是 ,对称轴是 . 5.已知二次函数的图象与轴的交点坐标是(-1,0),(5,0),且函数的最值是-3.则该抛物线开口向 ,当 时,随的增大而增大.6.请写出一个开口向下、与轴的交点坐标是(1,0)、(-3,0)的二次函数关系式: .7.已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绵阳师范学院《ERP沙盘模拟》2023-2024学年第二学期期末试卷
- 长春金融高等专科学校《绿色营销》2023-2024学年第二学期期末试卷
- 2025物业管理服务合同书
- 2025年户外装备租赁合同协议书
- 2025授权公司设备租赁合同范本
- 2025建筑公司装饰工程内部承包经营合同范本
- 2025年高考历史总复习高中历史130个关键概念一篇搞定
- 【7道期中】安徽省淮北市“五校联盟”2023-2024学年七年级下学期期中道德与法治试题(含解析)
- 2025房地产合作开发合同
- 山西省晋中市介休市2024-2025学年七年级下学期期中考试生物试题
- 北京市海淀区2023-2024学年八年级下学期期末物理试卷
- CJJ 232-2016 建筑同层排水工程技术规程
- JBT 14732-2024《中碳和中碳合金钢滚珠丝杠热处理技术要求》
- 固体氧化物燃料电池阴极的丝网印刷制备及其性能评价的研究
- 制定侦破方案教案设计
- 采矿工程毕业设计-矿井设计(含全套CAD图纸)
- 2024春期国开电大本科《中国当代文学专题》在线形考(形考任务一至六)试题及答案
- 《烛之武退秦师》教学设计 统编版高中语文必修下册
- RFJ 011-2021 人民防空工程复合材料(玻璃纤维增强塑料)防护设备选用图集(试行)
- 《公务员法》专题讲座
- 软件工程介绍
评论
0/150
提交评论