高中数学 第一章 数列 1.2.2.2 an与Sn的关系及裂项求和法课件 北师大版必修5.ppt_第1页
高中数学 第一章 数列 1.2.2.2 an与Sn的关系及裂项求和法课件 北师大版必修5.ppt_第2页
高中数学 第一章 数列 1.2.2.2 an与Sn的关系及裂项求和法课件 北师大版必修5.ppt_第3页
高中数学 第一章 数列 1.2.2.2 an与Sn的关系及裂项求和法课件 北师大版必修5.ppt_第4页
高中数学 第一章 数列 1.2.2.2 an与Sn的关系及裂项求和法课件 北师大版必修5.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时an与sn的关系及裂项求和法 1 an与sn的关系因为sn a1 a2 a3 an 当n 2 且n n 时 sn 1 a1 a2 an 1 所以sn sn 1 an 即an sn sn 1 而当n 1时 a1 s1 即s1为数列 an 的首项 因此 如果已知数列 an 的前n项和sn的公式 那么这个数列是确定的 并且 做一做1 已知数列 an 的前n项和sn n2 2n 则 an 的通项公式为 答案 an 2n 1 名师点拨利用sn求an的方法已知数列 an 的前n项和求通项公式an 一般要使用公式an sn sn 1 n 2 但必须注意它成立的条件是n 2 除此之外还要注意以下几点 1 求a1时不能使用an sn sn 1 因为s0在数列前n项和中无意义 而应该是a1 s1 2 由an sn sn 1求得的an 代入n 1时 若恰好a1 s1 则an sn sn 1就是其通项公式 3 由an sn sn 1求得的an 代入n 1时 若a1 s1 则数列的通项公式就用分段的形式来表示 即 2 裂项求和法裂项法求和是数列求和的一种常用方法 它的基本思想是设法将数列的每一项拆成两项 裂成两项 并使它们在相加时除了首尾各有一项或少数几项外 其余各项都能前后相抵消 进而可求出数列的前n项和 做一做2 思考辨析判断下列说法是否正确 正确的在后面的括号内打 错误的打 1 已知数列 an 的前n项和为sn 2n 2 则 an 的通项公式为an 2n 1 2 已知数列 an 的通项公式为an 18 3n sn是 an 的前n项和 tn是 an 的前n项和 则一定有tn sn 3 数列 1 2 3 4 5 6 7 8 1 n n 的前n项和为 答案 1 2 3 探究一 探究二 探究三 探究四 思维辨析 例1 1 已知数列 an 的前n项和为sn 2n2 8n 10 求通项公式an 并判断数列是否为等差数列 2 已知数列 an 的前n项和公式 求其通项公式 分析 根据an与sn的关系求an 要注意分类讨论 解 1 当n 2时 sn 1 2 n 1 2 8 n 1 10 2n2 12n 20 an sn sn 1 2n2 8n 10 2n2 12n 20 4n 10 当n 1时 a1 s1 2 8 10 4 当n 2时 an an 1 4n 10 4 n 1 10 4 数列 an 从第2项起构成等差数列 但 an 不是等差数列 探究一 探究二 探究三 探究四 思维辨析 探究一 探究二 探究三 探究四 思维辨析 反思感悟1 已知sn求an时 应分为以下三步 1 当n 2时 由an sn sn 1求出an 2 当n 1时 由a1 s1求出a1 并判断a1的值是否适合 1 中求得的an 3 写出an的表达式 2 在由sn求an时 若忽视对n 1时情况的讨论 将可能导致错误 探究一 探究二 探究三 探究四 思维辨析 变式训练1已知数列 an 的前n项和为sn sn 0 探究一 探究二 探究三 探究四 思维辨析 探究一 探究二 探究三 探究四 思维辨析 例2 已知正项数列 an 的前n项和为sn 且8sn an 2 2 1 求证 an 为等差数列 2 求 an 的通项公式 分析 1 根据an sn sn 1消去sn 得到an与an 1的关系后进行判断 2 由a1 s1代入求出a1的值 结合 1 求得通项公式 探究一 探究二 探究三 探究四 思维辨析 1 证明 因为8sn an 2 2 所以当n 2时 8sn 1 an 1 2 2 所以 an an 1 an an 1 4 0 又 an 为正项数列 所以an an 1 0 从而an an 1 4 0 即an an 1 4 故 an 是公差为4的等差数列 2 解 当n 1时 得8s1 a1 2 2 即8a1 a1 2 2 解得a1 2 所以 an 的通项公式an 2 n 1 4 即an 4n 2 探究一 探究二 探究三 探究四 思维辨析 反思感悟在给出数列的an与sn的关系式时 可根据an sn sn 1 n 2 将关系式中的sn 或an 消去 从而求得an与an 1 或sn与sn 1 的关系 然后借助等差数列或其他特殊数列中的方法求解 探究一 探究二 探究三 探究四 思维辨析 变式训练2已知在各项均为正数的数列 an 中 a1 1 sn是数列 an 的前n项和 对任意n n 有2sn pan p p r 1 求常数p的值 2 求数列 an 的通项公式 探究一 探究二 探究三 探究四 思维辨析 探究一 探究二 探究三 探究四 思维辨析 例3 已知等差数列 an 满足a3 7 a5 a7 26 an 的前n项和为sn 1 求an及sn 2 令 n n 求数列 bn 的前n项和tn 分析 1 设出公差 根据已知条件构造方程组可求出首项和公差 进而求出an及sn 2 先由 1 求出bn的通项公式 再根据通项的特点选择求和的方法 探究一 探究二 探究三 探究四 思维辨析 探究一 探究二 探究三 探究四 思维辨析 反思感悟1 通常情况下 当数列的通项公式是分式的形式 且分子是一个常数 分母是两个相邻的正整数之积时 可考虑用裂项法求和 2 用裂项法求和时 首先要将通项公式进行变形 化为两项相减的形式 然后将数列的各项用改写后的通项公式形式表示 最后将正 负项抵消即得前n项和 探究一 探究二 探究三 探究四 思维辨析 变式训练3 探究一 探究二 探究三 探究四 思维辨析 例4 在数列 an 中 a1 8 a4 2 且满足an 2 2an 1 an n n 1 求数列 an 的通项公式 2 设sn a1 a2 an 求sn 分析 1 根据等差数列的定义可知 an 是等差数列 2 先找出数列 an 中的非负项 再分类讨论 探究一 探究二 探究三 探究四 思维辨析 解 1 由题意知 an 2 an 1 an 1 an 所以 an 为等差数列 设公差为d 由a1 8 a4 2 得2 8 3d 解得d 2 所以an 8 2 n 1 10 2n 2 由 1 知an 10 2n 令10 2n 0 得n 5 即数列 an 的前5项为非负数 后面为负数 所以当n 5时 探究一 探究二 探究三 探究四 思维辨析 反思感悟对数列 an 的求和问题 首先要明确数列类型 然后要清楚a1 a2 a3 an与 a1 a2 an 的区别与联系 找出数列 an 中出现正负转换时的临界是解决问题的关键 探究一 探究二 探究三 探究四 思维辨析 因错用裂项求和法而出错 探究一 探究二 探究三 探究四 思维辨析 纠错心得1 在用裂项法求和时 要注意最后剩余的项不一定就是最前面的一项和最后面的一项 2 对于错解1 显然通项公式的变形是错误的 抵消项时也出现了错误 错解2对通项公式变形虽然正确 但抵消项时出现了错误 探究一 探究二 探究三 探究四 思维辨析 变式训练已知数列 an 是递增的等差数列 a1 a2是方程x2 3x 2 0的两根 1 求数列 an 的通项公式 2 求数列的前n项和sn 解 1 方程x2 3x 2 0的两根为1 2 由题意得a1 1 a2 2 设数列 an 的公差为d 则d a2 a1 1 所以数列 an 的通项公式为an n 1 2 3 4 5 1 设数列 an 的前n项和sn n2 则a8的值为 a 15b 16c 49d 64解析 a8 s8 s7 82 72 15 答案 a 1 2 3 4 5 2 已知数列 an 的前n项和sn 2n 1 则其通项公式为 a an 2nb an 2n 1c an 2n 1d an 2n 1 1解析 当n 2时 an sn sn 1 2n 1 2n 1 1 2n 1 当n 1时 a1 s1 21 1 1适合上式 故an 2n 1 n n 答案 b 1 2 3 4 5 1 2 3 4 5 4 已知数列 an 的通项公式为an 26 6n 则数列 an 的前10项和为 解析 令26 6n 0 得n 4 即数列 an 的前4项为非负数 后面为负数 所以当n 4时 答案 158 1 2 3 4 5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论