SequenceAlignment-Lirq.ppt_第1页
SequenceAlignment-Lirq.ppt_第2页
SequenceAlignment-Lirq.ppt_第3页
SequenceAlignment-Lirq.ppt_第4页
SequenceAlignment-Lirq.ppt_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SequenceAlignment 李瑞强lirq AspectsofBioinformaticsAnalysis Genomeassembly genomestructure repeat genedistribution Comparativegenomics synteny rearrangment duplication Genefinding motifdetection Pairwisealignment multi alignment genefamily phylogeny Microarraydesign signalrecognition clustering quantitation Molecularevolution Ka Ks Protein2D 3Dstructure homology domain functionalprediction deleteriousmutation Massspectrometry peptidesearch quantitation modification interaction SNP heterozygosis haplotype recombination association Softwarepipeline databaseconstruction Sequencealignment thefoundationofinformaticsanalysis DynamicprogrammingSubstitutionmatrix gappenaltiesGlobalandlocalalignmentGappedblastandPSI blastMulti alignment DPinequationform Alignsequencexandy FistheDPmatrix sisthesubstitutionmatrix disthelineargappenalty DPinequationform Asimpleexample FindtheoptimalalignmentofAAGandAGC Useagappenaltyofd 5 Asimpleexample FindtheoptimalalignmentofAAGandAGC Useagappenaltyofd 5 Asimpleexample FindtheoptimalalignmentofAAGandAGC Useagappenaltyofd 5 Asimpleexample FindtheoptimalalignmentofAAGandAGC Useagappenaltyofd 5 Traceback Startfromthelowerrightcornerandtracebacktotheupperleft Eacharrowintroducesonecharacterattheendofeachalignedsequence Ahorizontalmoveputsagapintheleftsequence Averticalmoveputsagapinthetopsequence Adiagonalmoveusesonecharacterfromeachsequence Startfromthelowerrightcornerandtracebacktotheupperleft Eacharrowintroducesonecharacterattheendofeachalignedsequence Ahorizontalmoveputsagapintheleftsequence Averticalmoveputsagapinthetopsequence Adiagonalmoveusesonecharacterfromeachsequence Asimpleexample FindtheoptimalalignmentofAAGandAGC Useagappenaltyofd 5 Asimpleexample FindtheoptimalalignmentofAAGandAGC Useagappenaltyofd 5 AAG AAG AGCA GC 1 2 Complexity Space O mn Time O mn FillingthematrixO mn BacktraceO m n Otherscoringschemes NeedlemanandWunsch 1foridenticalaminoacid 0otherwiseDayhoffPAMscoringmatrix variationsincludeBLOSUMmatrices HenikoffandHenikoff1992 Proc Nat Acad Sci 89 10915 10919 DifferentGapCostFunction BLOSUM62 Scoringmatrixforproteinsequences Aminoacids chemicalproperties Also Residualcolours aproposalforaminochromography Taylor Prot Eng 10 743 7461997 Gappenalties Iflowenough canalignanythingPenaltiesassociatedwithascoringmatrixTwocommonvarieties GapopeningcostsameasgapextensioncostOpeningandextensioncostsdifferent extensionmuchsmallerthanopening ATCGATTACCCAAGGGACGAA C A TAC CAA GG A A Anexampleofpeptidepairwisealignment Seq1 HEAGAWGHEESeq2 PAWHEAE HEAGAWGHE E P A W HEAE HEAGAWGHE E P AW HEAE Whichoneisbetter Alignment 1 Alignment 2 Traceback TracearrowsbackfromthelowerrighttotopleftDiagonal bothUp uppergapLeft lowergap HEAGAWGHE E P AW HEAE TypesofAlignment GlobalfindbestalignmentofentirelengthsNeedleman WunschalgorithmLocalhighestscoringregionofsimilaritynatureofsequenceevolutionmakesthisvastlymoreusefulfordatabasesearchingSmith Watermanalgorithmblast fastaetc useheuristicstospeedsearch LocalAlignment Smith Waterman 1981 Anotherdynamicprogrammingsolution Example Traceback Startathighestscoreandtracebacktofirst0 HEAGAWGHEE PAW HEAE Summary SimilartoglobalalignmentalgorithmForthistowork expectedmatchwithrandomsequencemusthavenegativescore BehaviorislikeglobalalignmentotherwiseSimilarextensionsforrepeatedandoverlapmatching BLASTAlgorithm ABCDEFGHIJKLMNCDDOPQACDERSHAGGPIFYLMLST Extensioncriteria one hit two hit ABCDEFGHIJKLMNCDDOPQACDERSHAGGPIFYLMLST SHSP hit BlastWordSize Query 4tcttctccaatgtgatgatggagttgaatgaacttaggactccactccaaggttgacttg63 Sbjct 2tctactctaatgtgatgctgggattgaattttcctaggactccgtttcaaggttaattcg61Query 64aaaggtgtgtagaagat80 Sbjct 62aaagtcttgtggaagat78 Minimumwordsizeof9neededtodetectsimilarity defaultis11 Forproteinswordsizeis3 matchneednotbeexact lessofanissue ABalancebetweenSpeedandSensitivity PSIBLAST Position SpecificIteratedBLASTIncorporatespositionspecificmatrices profiles OftenmuchbetteratdetectingweaksimilaritiesBeforePSIBLASTthesametechniqueswereused butalargedegreeofexpertiseandhumaninterventionwasrequired Itcandoaniterativesearchinwhichsequencesfoundinoneroundofsearchingareusedtobuildascoremodelforthenextroundofsearching Inthisusage theprogramiscalledPosition SpecificIteratedBLAST orPSI BLAST Flowchart ScoreMatrixArchitecture ProfilesverysimilartoscoringmatrixProteinornucleotidealignstoprofilepositionNewprofilecreatedwitheveryiterationProfilescreatedinturniusedinturni 1Gapcostsmaybeposition specificwithprofiles HowpositionspecificproteinscorematricesdrawtheirpowerImprovedestimationoftheprobabilitieswithwhichaminoacidsoccuratvariouspatternpositionsRelativelyprecisedefinitionoftheboundariesofimportantmotifsEverymatrixconstructedhasalengthexactlythesameastheoriginalquerysequence MultipleAlignmentConstruction SequenceWeights AlldatabasesequenceswhosealignedE valueisbelowaspecificthresholdareaddedtothequeryAnyrow orcolumn whichis 98 identicaltoapreviouslyaddedalignmentiskeptoutoftheprofileAllowsforbettersearchingonlateriterationsPoorrestrictionscouldleadtolargescaleprofilesequenceinsertionSequencesaregivendifferentweightsdependingonevolutionaryimportance MultipleSequenceAlignmentandtheIterations Position specificscorematrix PSIBLASTOverview Startoffwithqueryandinitialscorematrix BLOSUM62 HomologsarefoundusingBLAST alignDBtoquery E ValueisusedascriteriaforsequenceinsertionintoprofileAprofile p1 isconstructedfromthepassingsequencesandscorematrixOnceagainsearchforhomologsusingBLAST alignDBtoprofile OnceagainuseE ValueascriteriaforinsertionintoprofileAprofile p2 isconstructedfromtheapprovedsequencesandscorematirx Multi Alignment MultipleAlignment multipledimensions ProgressiveAlignmentProfileProgressiveAlignment ClustalW GeneralizingtheNotionofPairwiseAlignment Upuntilnowwehaveonlytriedtoaligntwosequencestooneanother Whataboutmorethantwo Werepresentedalignmentof2sequencesasa2 rowmatrixInasimilarway werepresentalignmentof3sequencesasa3 rowmatrixAT GCG A CGT AATCAC AScore moreconservedcolumns betteralignment AligningThreeSequences SamestrategyasaligningtwosequencesUsea3 D ManhattanCube witheachaxisrepresentingasequencetoalignForglobalalignments gofromsourcetosink source sink 2 Dvs3 DAlignmentGrid V W 2 Deditgraph 3 D Architectureof3 DAlignmentGrid In3 D 7edgesineachunitcube In2 D 3edgesineachunitsquare ACellof3 DAlignmentGrid i 1 j 1 k 1 i j 1 k 1 i j 1 k i 1 j 1 k i 1 j k i j k i 1 j k 1 i j k 1 MultipleAlignment DynamicProgramming Si j k max x y z isanentryinthe3 Dscoringmatrix whichisalsoofenhanceddimension squarediagonal noindels facediagonal oneindel edgediagonal twoindels AlignmentPaths Alignthefollowing3sequences ATGC AATC ATGC Resultingpath x y z 0 0 0 1 1 0 1 2 1 2 3 2 3 3 3 4 4 4 xcoordinate ycoordinate zcoordinate MultipleAlignment RunningTime For3sequencesoflengthn theruntimeis7n3 O n3 Forksequences buildak dimensionalManhattan withruntime 2k 1 nk O 2knk Conclusion dynamicprogrammingapproachforalignmentbetweentwosequencesiseasilyextendedtoksequencesbutitisimpracticalduetoexponentialrunningtime CombiningOptimalPairwiseAlignmentsintoMultipleAlignment Cancombinepairwiseintomultiplealignment Cannotcombinepairwiseintomultiplealignment MultipleAlignment GreedyApproach Choosemostsimilarpairofstrings combineintoaconsensus therebyreducingksequencestoaofk 1sequences RepeatThisisaheuristicgreedymethod u1 ACGTACGTACGT u2 TTAATTAATTAA u3 ACTACTACTACT uk CCGGCCGGCCGG u1 AC TAC TAC T u2 TTAATTAATTAA uk CCGGCCGGCCGG k k 1 GreedyApproach Example Considerthese4sequences s1GATTCAs2GTCTGAs3GATATTs4GTCAGC GreedyApproach Example cont d Thereare 6possiblealignments s2GTCTGAs4GTCAGC score 2 s1GAT TCAs2G TCTGA score 1 s1GAT TCAs3GATAT T score 1 s1GATTCA s4G T CAGC score 0 s2G TCTGAs3GATAT T score 1 s3GAT ATTs4G TCAGC score 1 GreedyApproach Example cont d s2ands4areclosest combine s2GTCTGAs4GTCAGC s2 4GTCTGA consensus s1GATTCAs3GATATTs2 4GTCTGA newsetbecomes GreedyApproach Example cont d s1GATTCAs3GATATTs2 4GTCTGA setis s1GAT TCAs3GATAT T score 1 s1GATTC As2 4G T CTGA score 0 s3GATATT s2 4G TCTGA score 1 scoresare Takebestpairandformanotherconsensus s1 3 GATATT arbitrarilybreakties GreedyApproach Example cont d newsetis s1 3GATATTs2 4GTCTGA s1 3GATATTs2 4G TCTGA score 1 Formconsensus s1 3 2 4 GATCTG arbitrarilybreakties scoresis ProgressiveAlignment ProgressivealignmentisavariationofgreedyalgorithmProgressivealignmentworkswellforclosesequences butitisnotthebestGapsinconsensusstringarepermanentSimplifiedrepresentationofthealignmentsBettersolution Useaprofile ATG CAAAT CCA ACG CTG ClustalW MostpopularmultiplealignmenttooltodaySeveralheuristicstoimproveaccuracy SequencesareweightedbyrelatednessScoringmatrixcanbechosen onthefly Position specificgappenalties ClustalW cont d Oftenusedforproteinalignment W standsfor weighted Differentpartsofalignmentareweighted Position residuespecificgappenalties Three stepprocess1 Pairwisealignment2 BuildGuid

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论