已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.1正弦函数、余弦函数的图象14.2正弦函数、余弦函数的性质考试标准课标要点学考要求高考要求正弦函数、余弦函数的图象bc周期函数的概念aa正弦函数、余弦函数的性质bb知识导图学法指导1.本节内容以三角函数的图象及其性质为主,因此在学习过程中应先学会作图,然后利用图象研究函数的性质2深刻理解五点的取法,特别是非正常周期的五点3注意所有的变换是图象上的点在移动,是x或y在变化而非x.4运用整体代换的思想,令xt,借助ysin t,ycos t的图象和性质研究函数ysin(x),ycos(x)的图象和性质第1课时正弦函数、余弦函数的图象正弦曲线与余弦曲线及其画法函数ysin xycos x图象图象画法五点法五点法关键五点(0,0),(,0),(2,0)(0,1),(,1),(2,1)1.关于正弦函数ysin x的图象(1)正弦函数ysinx,x2k,2(k1),kZ的图象与x0,2上的图形一致,因为终边相同角的同名三角函数值相等(2)正弦函数的图象向左、右无限延伸,可以由ysinx,x0,2图象向左右平移得到(每次平移2个单位)2“几何法”和“五点法”画正、余弦函数的比较(1)“几何法”就是利用单位圆中正弦线和余弦线作出正、余弦函数图象的方法. 该方法作图较精确,但较为烦琐(2)“五点法”是画三角函数图象的基本方法,在要求精度不高的情况下常用此法提醒:作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x轴、y轴上可以统一单位,这样作出的图象正规便于应用小试身手1判断下列命题是否正确. (正确的打“”,错误的打“”)(1)“五点法”作正、余弦函数的图象时的“五点”是指图象上的任意五点()(2)正弦函数在和上的图象相同()(3)正弦函数、余弦函数的图象分别向左、右无限延伸()答案:(1)(2)(3)2以下对正弦函数ysin x的图象描述不正确的是()A在x2k,2(k1)(kZ)上的图象形状相同,只是位置不同B介于直线y1与直线y1之间C关于x轴对称D与y轴仅有一个交点解析:画出ysin x的图象,根据图象可知A,B,D三项都正确答案:C3下列图象中,是ysin x在0,2上的图象的是()解析:函数ysin x的图象与函数ysin x的图象关于x轴对称,故选D.答案:D4用“五点法”作函数ycos 2x,xR的图象时,首先应描出的五个点的横坐标是_解析:令2x0,和2,得x0,.答案:0,类型一用“五点法”作三角函数的图象例1用“五点法”作出下列函数的简图:(1)ysin x,x0,2;(2)y1cos x,x0,2【解析】(1)按五个关键点列表:x02sin x01010sin x描点,并将它们用光滑的曲线连接起来(如图)(2)列表:x02cos x101011cos x01210描点连线,其图象如图所示:作函数图象需要先列表再描点,最后用平滑曲线连线方法归纳作形如yasin xb(或yacos xb),x0,2的图象的三个步骤跟踪训练1画出函数y32cos x的简图解析:(1)列表,如下表所示x02ycos x10101y32cos x53135(2)描点,连线,如图所示:利用五点作图法画简图类型二正、余弦函数曲线的简单应用例2根据正弦曲线求满足sin x在0,2上的x的取值范围【解析】在同一坐标系内作出函数ysin x与y的图象,如图所示观察在一个闭区间0,2内的情形,满足sin x的x,所以满足sin x在0,2上的x的范围是x0x或x2.或在同一坐标系内作ysin x与y的图象,利用图象求x的范围.方法归纳利用三角函数图象解sin xa(或cos xa)的三个步骤(1)作出直线ya,ysin x(或ycos x)的图象(2)确定sin xa(或cos xa)的x值(3)确定sin xa(或cos xa)的解集注意解三角不等式sin xa,如果不限定范围时,一般先利用图象求出x0,2范围内x的取值范围,然后根据终边相同角的同名三角函数值相等,写出原不等式的解集跟踪训练2根据余弦曲线求满足cos x的x的取值范围解析:作出余弦函数ycos x,x0,2的图象,如图所示,由图象可以得到满足条件的x的集合为2k,2k,kZ.在同一坐标内作ycos x与y的图象,利用图象求x的范围.1.4.1-2.1基础巩固(25分钟,60分)一、选择题(每小题5分,共25分)1下列对函数ycos x的图象描述错误的是()A在0,2和4,6上的图象形状相同,只是位置不同B介于直线y1与直线y1之间C关于x轴对称D与y轴只有一个交点解析:观察余弦函数的图象知:ycos x关于y轴对称,故C错误答案:C2下列各点中,不在ysin x图象上的是()A(0,0) B.C. D(,1)解析:ysin x图象上的点是(,0),而不是(,1)答案:D3不等式sin x0,x0,2的解集为()A0, B(0,)C. D.解析:由ysin x在0,2的图象可得答案:B4点M在函数ysin x的图象上,则m等于()A0 B1C1 D2解析:点M在ysin x的图象上,代入得msin1,m1.答案:C5在同一平面直角坐标系内,函数ysin x,x0,2与ysin x,x2,4的图象()A重合 B形状相同,位置不同C关于y轴对称 D形状不同,位置不同解析:根据正弦曲线的作法过程,可知函数ysin x,x0,2与ysin x,x2,4的图象位置不同,但形状相同答案:B二、填空题(每小题5分,共15分)6下列叙述正确的有_(1)ysin x,x0,2的图象关于点P(,0)成中心对称;(2)ycos x,x0,2的图象关于直线x成轴对称;(3)正弦、余弦函数的图象不超过直线y1和y1所夹的范围解析:分别画出函数ysin x,x0,2和ycos x,x0,2的图象,由图象观察可知(1)(2)(3)均正确答案:(1)(2)(3)7关于三角函数的图象,有下列说法:(1)ysin|x|与ysin x的图象关于y轴对称;(2)ycos(x)与ycos|x|的图象相同;(3)y|sin x|与ysin(x)的图象关于x轴对称;(4)ycos x与ycos(x)的图象关于y轴对称其中正确的序号是_解析:对(2),ycos(x)cos x,ycos|x|cos x,故其图象相同;对(4),ycos(x)cos x,故其图象关于y轴对称,由作图可知(1)(3)均不正确答案:(2)(4)8直线y与函数ysin x,x0,2的交点坐标是_解析:令sin x,则x2k或x2k,又x0,2,故x或.答案:,三、解答题(每小题10分,共20分)9利用“五点法”作出函数y1sin x(0x2)的简图解析:(1)取值列表:x02sin x010101sin x10121(2)10根据ycos x的图象解不等式:cos x,x0,2解析:函数ycos x,x0,2的图象如图所示:根据图象可得不等式的解集为.能力提升(20分钟,40分)11已知函数y2cos x(0x2)的图象和直线y2围成一个封闭的平面图形,则这个封闭图形的面积为()A4 B8C2 D4解析:依题意,由余弦函数图象关于点和点成中心对称,可得y2cos x(0x2)的图象和直线y2围成的封闭图形的面积为224.答案:D12函数y的定义域是_解析:要使函数有意义,只需2cos x0,即cos x.由余弦函数图象知(如图),所求定义域为,kZ.答案:,kZ13利用“五点法”作出ysin的图象解析:列表如下:x2sin01010描点并用光滑的曲线连接起来14利用图象变换作出下列函数的简图:(1)y1cos x,x0,2;(2)y|sin x|,x0,4解析:(1)首先用“五点法”作出函数ycos x,x0,2的简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年养老机构托管运营合同3篇
- 2024年VIP会员产品售后服务协议2篇
- 2024年度汽车租赁与充电桩建设合作合同3篇
- 2024年度安全生产技术服务合同范本2篇
- 2024年无抵押个人借款协议
- 2024ktv员工健康体检与疾病预防合同范本2篇
- 2024年度人才派遣与培训服务合同3篇
- 2024年度建筑工程设计与施工协调协议2篇
- 2024圈环线西南环段A3合同段锚具产品认证与追溯合同3篇
- 2024年度建筑垃圾清运与资源化利用协议版B版
- 2024年时事政治热点题库单选题200道及参考答案【完整版】
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- MOOC 财务管理-上海对外经贸大学 中国大学慕课答案
- 国测省测四年级劳动质量检测试卷
- 运输服务保障方案
- 参事年终工作总结汇报
- 北师大版七年级数学上册 期末重难点真题特训之易错必刷题型(96题32个考点)(原卷版+解析)
- 团餐行业现状分析报告
- 质量安全管理措施 (全面)
- 2024年详解《中华人民共和国爱国主义教育法》主题教育课件
- 放射科应急救援预案及流程
评论
0/150
提交评论