高考风向标:数学文科一轮复习精编课件《一元二次不等式及其解法》ppt精编课件.ppt_第1页
高考风向标:数学文科一轮复习精编课件《一元二次不等式及其解法》ppt精编课件.ppt_第2页
高考风向标:数学文科一轮复习精编课件《一元二次不等式及其解法》ppt精编课件.ppt_第3页
高考风向标:数学文科一轮复习精编课件《一元二次不等式及其解法》ppt精编课件.ppt_第4页
高考风向标:数学文科一轮复习精编课件《一元二次不等式及其解法》ppt精编课件.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲 一元二次不等式及其解法 一元二次不等式与相应的二次函数及一元二次方程的关系如 下表 若a 0时 可以先将 对照上表求解 没有实根 x xx2 R x x1 x x2 二次项系数a化成正数 1 不等式x2 1的解集为 A A x 1 x 1 C x x 1 B x x 1 D x x 1或x 1 2 不等式 x 1 0的解集是 B A x x 1 C x x 1 B x x 1或x 2 D x x 2且x 1 3 下四个不等式中解集为R的是 C x 34 2010年全国 不等式 0的解集为 x 2 A A x 2 x 3 B x x 2 C x x 2或x 3 D x x 3 5 不等式 x2 2x 3 0的解集是 x 3 x 1 考点1 解一元二次 分式不等式 答案 D 解一元二次不等式的步骤 先对不等式变形 使不等式的右边为零 左边的二次项系数为正 计算相应的判别式 求出相应方程的根 或者判定相应的方程无根 结合相应二次函数的图象写出不等式的解集 答案 x1 互动探究 解析 由函数解析式可知6 x x2 0 即x2 x 6 0 故 3 x 2 3 2 考点2含参数不等式的解法 例2 解关于x的一元二次不等式x2 3 a x 3a 0 解题思路 比较根的大小确定解集 解析 x2 3 a x 3a 0 x 3 x a 0 1 当a3 不等式解集为 x x3 2 当a 3时 不等式为 x 3 2 0 解集为 x x R且x 3 3 当a 3时 xa 不等式解集为 x xa 解含参数的有理不等式时分以下几种情况讨论 根据二次项系数讨论 大于0 小于0 等于0 根据根的判别式讨论 0 0 x2 x1 x2 x1 x2 互动探究 2 解关于x的不等式ax2 a 1 x 1 0 考点3一元二次不等式的应用 例3 已知二次函数f x 的二次项系数为a 且不等式f x 2x的解集为 1 3 1 若方程f x 0的两根一个大于 3 另一个小于 3 求a 的取值范围 2 若方程f x 6a 0有两个相等的实根 求f x 的解析式 解析 1 设函数f x 2x a x 1 x 3 且a 0 则f x a x 1 x 3 2x 若方程f x 0的两实根一个大于 3 另一个小于 3 互动探究 3 若不等式x2 ax b 0的解集为 x 2 x 3 则不等式bx2 ax 1 0的解集为 思想与方法9 利用转化与化归思想求参数的范围 例题 2011届甘肃兰州联考 已知函数f x x2 2x ax x 1 1 若对任意x 1 f x 0恒成立 求实数a的取值范围 2 若对任意a 1 1 f x 4恒成立 求实数x的取值范围 在含有多个变量的数学问题中 选准 主元 往往是解题的关键 即需要确定合适的变量或参数 能使函数关系更加清晰明朗 一般地 已知存在范围的量为变量 而待求范围的量为参数 如 1 中x为变量 关于x的二次函数 a为参数 2 中a为变量 关于a的一次函数 x为参数 1 高次不等式 包括分式不等式 解法 尽可能进行因式分解 分解成一次因式后 再利用数轴标根 法求解 注意每个因式的最高次项的系数要求为正数 2 解决一元二次不等式有关问题的常见数学思想方法 1 数形结合思想 三个二次的完美结合是数形结合思想的具 体体现 2 分类讨论思想 当二项系数含参数a时 要对二次项系数分a 0 a0 0 0 如果根里含有参数 要注意对两个根的大小进行讨论 3 转化与化归思想 解分式 指数 对数 绝对值等类型的不等式时 一般要把它们转化成一元二次 一次 不等式 组 的形式进行解决 转化的方法通常是代数化 有理化 整式化 低次化 1 结合二次函数图象解不等式时 一定要注意不等号的方向 与二次函数图象的开口方向 2 不等式的解集一定要用集合或区间的形式表示出来 3 含参数不等式的解法 求解的通法是 定义域为前提 函数增减性为基础 分类讨论是关键 注意解完之后要写上 综上 原不等式的解集是 注意 按参数讨论 最后应按参数取值分别说明其解集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论