The Whistler Radar KNMI:惠斯勒雷达KNMI.ppt_第1页
The Whistler Radar KNMI:惠斯勒雷达KNMI.ppt_第2页
The Whistler Radar KNMI:惠斯勒雷达KNMI.ppt_第3页
The Whistler Radar KNMI:惠斯勒雷达KNMI.ppt_第4页
The Whistler Radar KNMI:惠斯勒雷达KNMI.ppt_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

radarqualitycontrolandquantitativeprecipitationestimationintercomparisonprojectstatus pauljoeenvironmentcanadacommissionofinstruments methodsandobservations cimo upperairandremotesensingtechnologies ua rst outline projectconcepttheproblemoverviewofdataqualitytechniquespre rqqiresultsstatus externalfactors segmentingthedqadjustmentalgorithms windturbinesrlan rvdilemmanoise conversionto p datacorrection zdrcalibration antpolerrors noiseprocessing orographicenhancement recursiveissues segmentingthedqprocessforquantitativeprecipitationestimation removeartifacts cleanedup3dvolume estimatingsurface 3dreflectivity estimatingsurface 3dprecipitation mosaicingspace timeestimation focusonreflectivity nowcastingclearairechoasinformation radardqisnotjustaboutqpe nowcastingnon precipitatingechoes insectsdataclassificationradardatafornwpreflectivity radialvelocityassimilationvadwinds segmentingthedqprocess removeartifacts cleanedup3dvolume estimatingsurface 3dradarmoments estimatingsurface3dprecipitation classification mosaicingspace timeestimationin3d reflectivityradialvelocitydual polarization someexamples everyradarhasclutterduetoenvironment seaclutterandducting electromagneticinterference techniques cappiisaclassictechniquetoovercomegroundclutter vvo 5o43210 linesareelevationanglesat1ospacing orangeisevery5o canadaaustralia u s chinavcp21whistlervalleyradar 3 0cappi 1 5cappi thereareavarietyofscanstrategies cappiprofiles makebetterordrop theelevationanglesbutnatureofweatherimportantforcappi 2 5o1 5o0 5o ppi s 1 5kmcappi dopplerzerovelocitynotch dopplervelocityspectrumpulsepair timedomain fft frequencydomain 2 reflectivitystatistics before after dopplerfiltering snow rain toomuchechoremoved however betterthanwithoutfiltering dataprocessingplussignalprocessingtexture fuzzylogic spectral dixon kessinger hubbert dataprocessingplussignalprocessing fuzzylogic removalofanomalouspropagation nonqcqc lipingliu cma themetricofsuccess iso range variance asanintercomparisonmetric danielmichelson smhi accumulation awinterseasonlog raingauge radardifference noblockageringsofdecreasingvalue differenceincreasesrange verticalprofileofreflectivityissmoothedasthebeamspreadsinrangeduetoearthcurvatureandbeampropagatingabovetheweather variancemetric similartobeforeexceptareaofpartialblockagecontributestolotsofscatteralgorithmsthatareabletoinfilldatashouldreducethevarianceinthescatter michelson proposedmetric alternatemetricsaccumulationofradialvelocityshouldproducethemeanwindforthesite bothlookbelievable maybedifferenceisduetodifferentdatasetlength nonqcqc modality needavarietyoftechniquesneedavarietyofscanstrategiesneedavarietyofdatasetsthatintegratetoauniformpatternneedweatherwithavarietyofartifacts pilotstudy purposeistotesttheassumptionsoftheprojectmodalityshortdatasetsforuniformitychecktheinterpretationofthemetricvarietyofscanstrategies algorithms etcevaluatefeasibility uniformfields samplecases uniformwithlocalclutter xla uniformwithpartialblocking wvy urbanclutter niagaraescarpment wkr stronganomalouspropagationecho tj2006 strongapwithweather tj2007 seaclutter sydneyau kurnell seaclutter multi pathap saudi2002 convectiveweatherwithairplanetracks oneseason tjradar2007 xla thedataaccumulatestouniformpattern widespreadsnow abaselinecase irisformatteddata 24elevationangles doppler dbzt dbzc vr spw atlowlevels rangeres 1kmor0 5km azres 1or0 5degrees wvy thedataaccumulatestouniformpatternwithanareaofblockage widespreadsnow abaselinecase irisformatteddata 24elevationangles doppler dbzt dbzc vr spw atlowlevels rangeres 1kmor0 5km azres 1or0 5degrees wkr thedataaccumulatestouniformpatternwithanareaofblockage widespreadsnow urban skyscrapers andsmallterrainclutter irisformatteddata 24elevationangles doppler dbzt dbzc vr spw atlowlevels rangeres 1kmor0 5km azres 1or0 5degrees bscanofzaccumulationwithnofiltering dopplerandcappi cappidopplernofiltering azimuth range km 0100 probabilitydensityfunctionofreflectivityasafunctionofrange rawdopplercappi whatlengthofdatasetsareneeded highlyvariablemoreuniform smoother morecontinuous thetechniques dopplernotchingcappi1 5kmcappi3 0kmmixedofdopplernotchingandcappiradarechoclassifier rec anomalouspropagationseaclutterrec cma thestatistic spreadofpdf atconstantrange forvariouscasesandtechniques status statusandacknowledgements kimata japanliu chinaseed australiamichelson swedensempere torres spainhoward usahubbert usacalhieros brazillevizzani italy ipwggaussiat uk operahubdonaldson canada dataprovidersalgorithmprovidersevaluationteamreviewers summary on goingdataproviders processorsiden

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论