



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 圆垂径定理教学设计一、学生起点分析学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力二、教学任务分析该节内容为1课时圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆定理具体地说,本节课的教学目标是:1利用圆的轴对称性研究垂径定理及其逆定理;2运用垂径定理及其逆定理解决问题3经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法教学重点:利用圆的轴对称性研究垂径定理及其逆定理教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线三、教学设计分析第一环节 复习引入1. 圆是轴对称图形吗?指出它的对称轴。2如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)你能图中有哪些等量关系?说一说你的理由第二环节 探索新知条件: CD是直径; 结论:AM=BM; CDAB =;=.证明:连接OA,OB,则OA=OB.在RtOAM和RtOBM中,OA=OB,OM=OM,RtOAMRtOBM.AM=BM.点A和点B关于CD对称.O关于直径CD对称,当圆沿着直径CD对折时, 点A与点B重合,和重合, 和重合. =,=.2证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容垂直于弦的直径平分这条弦,并且平分弦所对的两条弧3辨析:判断下列图形,能否使用垂径定理?OCDBA注意:定理中的两个条件缺一不可直径(半径),垂直于弦4垂径定理逆定理的探索如图,AB是O 的弦(不是直径),作一条平分AB的直径CD,交AB于点M.(1)下图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由.条件: CD是直径; AM=BM 结论:CDAB;=;=.让学生模仿垂径定理的证明过程,自行证明逆定理,并表述逆定理的内容平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”如果该定理少了“不是直径”,是否也能成立?ODBAC反例:第三环节 知识应用1例:如图,一条公路的转弯处是一段圆弧(即图中Error! No bookmark name given.Error! No bookmark name given.,点0是所在圆的圆心),其中CD=600m,E为上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径2随堂练习11400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径(结果精确到0.1米)3随堂练习2如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?有三种情况:(1)圆心在平行弦外; (2)圆心在其中一条弦上;OCDBAOCDBAOCDBA (3)圆心在平行弦内第四环节 归纳小结1利用圆的轴对称性研究了垂径定理及其逆定理.2解决有关弦的问题,经常是过圆心作弦的垂线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西藏那曲地区嘉黎县2025届数学三下期末检测试题含解析
- 商务礼仪培训课件
- 2025年租赁合同范本参考文献
- 2025汽车销售融资租赁合同模板
- 2025建筑物外墙及阳台栏杆翻新项目合同
- 2025水电工合同范文合同
- 2025年济南长清区八年级下学期数学期中考试试题(含答案)
- 2025智能家居动漫设计合同
- 2025年石油销售居间合同协议范本
- 电子口岸简介
- 高中物理选修二第一章《安培力与洛伦兹力》测试题(含答案解析)
- 江苏省徐州市睢宁县2023-2024学年七年级下学期期中考试数学试卷(含答案)
- 专题13 统计与概率-【好题汇编】五年(2020-2024)高考数学真题分类汇编(含答案解析)
- 国家开放大学本科(非英语专业)学士学位英语统一考试样题
- GB/T 44273-2024水力发电工程运行管理规范
- 城轨行车课程设计
- 中职护理专业护理服务质量评价体系研究
- 2024年南京市中考历史试题及答案
- 小学生卫生知识健康教育精课件
- A类供应商绩效评价表
- 新目标英语初三英语总复习资料讲义
评论
0/150
提交评论