




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用放缩法证明数列中的不等式,1,放缩法证明数列不等式是数列中的难点内容,在近几年的广东高考数列试题中都有考查.放缩法灵活多变,技巧性要求较高,所谓“放大一点点就太大,缩小一点点又太小”,这就让同学们找不到头绪,摸不着规律,总觉得高不可攀!高考命题专家说:“放缩是一种能力.”如何把握放缩的“度”,使得放缩“恰到好处”,这正是放缩法的精髓和关键所在!其实,任何事物都有其内在规律,放缩法也是“有法可依”的,本节课我们一起来研究数列问题中一些常见的放缩类型及方法,破解其思维过程,揭开其神秘的面纱,领略和感受放缩法的无限魅力!,2,3,一.放缩目标模型可求和,4,不等式左边可用等比数列前n项和公式求和.,分析,左边,表面是证数列不等式,实质是数列求和,5,不等式左边可用“错位相减法”求和.,分析,由错位相减法得,表面是证数列不等式,实质是数列求和,6,左边不能直接求和,须先将其通项放缩后求和,如何放缩?,分析,将通项放缩为等比数列,注意到,左边,7,左边不能直接求和,须先将其通项放缩后求和,如何放缩?,分析,注意到,将通项放缩为错位相减模型,8,【方法总结之一】,9,10,左边可用裂项相消法求和,先求和再放缩.,分析,表面是证数列不等式,实质是数列求和,11,左边不能求和,应先将通项放缩为裂项相消模型后求和.,分析,保留第一项,从第二项开始放缩,当n=1时,不等式显然也成立.,12,变式2的结论比变式1强,要达目的,须将变式1放缩的“度”进行修正,如何修正?,分析,保留前两项,从第三项开始放缩,思路一,左边,将变式1的通项从第三项才开始放缩.,当n=1,2时,不等式显然也成立.,13,变式2的结论比变式1强,要达目的,须将变式1放缩的“度”进行修正,如何修正?,分析,保留第一项,从第二项开始放缩,思路二,左边,将通项放得比变式1更小一点.,当n=1时,不等式显然也成立.,14,变式3的结论比变式2更强,要达目的,须将变式2放缩的“度”进一步修正,如何修正?,分析,保留前两项,从第三项开始放缩,思路一,左边,将变式2思路二中通项从第三项才开始放缩.,当n=1,2时,不等式显然也成立.,15,变式3的结论比变式2更强,要达目的,须将变式2放缩的“度”进一步修正,如何修正?,分析,保留第一项,从第二项开始放缩,思路二,左边,将通项放得比变式2思路二更小一点.,当n=1时,不等式显然也成立.,16,评注,17,【方法总结之二】,放缩法证明与数列求和有关的不等式的过程中,很多时候要“留一手”,即采用“有所保留”的方法,保留数列的第一项或前两项,从数列的第二项或第三项开始放缩,这样才不致使结果放得过大或缩得过小.,18,牛刀小试(变式练习1),证明,当n=1时,不等式显然也成立.,19,(08辽宁卷)已知:,求证:.,故,当时,有也成立,20,当时,有也成立,21,常见的裂项放缩技巧:,4.,1.,3.,5.,6.,2.,22,右边保留第一项,思路,为了确定S的整数部分,必须将S的值放缩在相邻的两个整数之间.,23,分析,思路,左边,利用指数函数的单调性放缩为等比模型,24,分析,左边,保留第一项,从第二项开始放缩,左边不能直接求和,能否仿照例4的方法将通项也放缩为等比模型后求和?,当n=1时,不等式显然也成立.,25,【方法总结之三】,26,故,当时,有也成立,27,思路,28,证明,评注,用分析法寻找证明思路显得一气呵成!,29,【方法总结之四】,30,二.放缩目标模型可求积,31,思路,32,证明,33,【方法总结之五】,34,牛刀小试(变式练习2)(1998全国理25第(2)问),证明,35,课堂小结,本节课我们一起研究了利用放缩法证明数列不等式,从中我们可以感受到在平时的学习中有意识地去积累总结一些常用的放缩模型和放缩方法非常必要,厚积薄发,“量变引起质变”.当然,要想达到炉火纯青的深厚功力,还必须在实践中不断去感悟,仔细揣摩其方法,逐步内化为自己个人的“修为”.南宋杰出的诗人陆游说得好:“古人学问无遗力,少壮工夫老始成。纸上得来终觉浅,绝知此事要躬行。”讲的就是这个道理.,36,例如:我们可以这样总结本节课学到的放缩模型:,放缩目标模型,可求和,可求积,等差模型,等比模型,错位相减模型,裂项相消模型,37,又如:我们可以这样总结本节课学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绍兴电动推拉棚施工方案
- 山东杏林科技职业学院《商务英语阅读2》2023-2024学年第二学期期末试卷
- 四平职业大学《宪法与法理学前沿问题研究》2023-2024学年第二学期期末试卷
- 济南幼儿师范高等专科学校《移动后台设计与开发》2023-2024学年第一学期期末试卷
- 营口理工学院《药厂设备及车间工艺设计》2023-2024学年第一学期期末试卷
- 宜春幼儿师范高等专科学校《概率论与数理统计II》2023-2024学年第二学期期末试卷
- 吉林交通职业技术学院《装饰材料与构造》2023-2024学年第二学期期末试卷
- 洛阳文化旅游职业学院《农业环境监测》2023-2024学年第二学期期末试卷
- 烟台铁皮房防水施工方案
- 2025至2031年中国水晶活性金深层滋养去角质层行业投资前景及策略咨询研究报告
- 店长劳务合同协议
- 2024年地理中考模拟考试地理(江苏泰州卷)(A4考试版)
- 乳腺癌诊治指南与规范(2025年版)解读
- 2024年上海嘉定区区属国有企业招聘真题
- 2025河北建投水务招聘29人易考易错模拟试题(共500题)试卷后附参考答案
- 常德辅警考试题库
- 基于核心素养的初中历史跨学科教学策略研究
- 有理数的加法说课课件2024-2025学年人教版数学七年级上册
- 肺癌化疗护理查房
- 2025年04月中共北京市大兴区委政法委员会公开招聘临时辅助用工4人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- GB/T 18655-2025车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法
评论
0/150
提交评论