




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简单的线性规划,江西省永丰县永丰中学:徐冬发,二元一次不等式表示的平面区域,在平面直角坐标系中,以二元一次方程x+y-1=0的解为坐标的点的集合(x,y)|x+y-1=0是经过点(0,1)和(1,0)的一条直线l,那么以二元一次不等式x+y-10的解为坐标的点的集合(x,y)|x+y-10是什么图形?,结论:二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域。不等式ax+by+c0,x+y-10,x+y-10表示这一直线哪一侧的平面区域,特殊地,当c0时常把原点作为此特殊点。,二元一次不等式表示平面区域,例1:画出不等式2x+y-60表示的平面区域。,启动几何画板,注意:把直线画成虚线以表示区域不包括边界,2x+y-6=0,二元一次不等式表示平面区域,例2:画出不等式组表示的平面区域。,x-y+5=0,x+y=0,x=3,练习:,X,O,Y,A,B,C,D,7,12,-7,6,8,y=6,x-y=7,2x+3y=24,l0:3x+y=0,l1,例3:满足线性约束条件的可行域中共有多少个整数解。,1,2,2,3,3,1,4,4,5,5,x,y,0,解:由题意得可行域如图:,由图知满足约束条件的可行域中的整点为(1,1)、(1,2)、(2,1)、(2,2)故有四个整点可行解.,线性规划,例4:设z=2x+y,式中变量满足下列条件:求z的最大值与最小值。,y,直线L越往右平移,t随之增大.,以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.,Zmin=3,Zmax=12,线性规划有关概念,线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,可行解:满足线性约束条件的解(x,y)叫可行解;,可行域:由所有可行解组成的集合叫做可行域;,最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。,可行域,课堂练习:,(1)求的最大值,使x,y满足约束条件,(2)求的最大值和最小值,使x,y满足约束条件,5,5,1,O,x,y,y-x=0,x+y-1=0,1,-1,y+1=0,A(2,-1),B(-1,-1),5,5,1,O,x,y,1,-1,5x+3y=15,X-5y=3,y=x+1,A(-2,-1),B(3/2,5/2),(3)求z=2x+y的最大值,使式中的x、y满足约束条件:,Zmin=-3,Zmax=3,解线性规划问题的步骤:,(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点的边界直线;,(3)求:通过解方程组求出最优解;,(1)画:画出线性约束条件所表示的可行域;,例5:某人准备投资1200万元兴办一所完全中学。对教育市场进行调查后,他得到了下面的数据表格(以班级为单位),分别用数学关系式和图形表示上述限制条件。若根据有关部门的规定,初中每人每年可收学费1600元,高中每人每年可收学费2700元。那么开设初中班和高中班多少个?每年收费的学费总额最多?,线性规划的实际应用,把上面四个不等式合在一起,得到,y,x,20,30,40,20,30,o,另外,开设的班级不能为负,则x0,y0。,而由于资金限制,26x54y22x23y1200,解:设开设初中班x个,高中班y个。因办学规模以2030个班为宜,所以,20xy30,y,x,20,30,40,20,30,o,由图可以看出,当直线Z7.2x10.8y经过可行域上的点M时,Z最大。,设收取的学费总额为Z万元,则目标函数Z0.1645x0.2740y7.2x10.8y。,M,易求得M(20,10),则Zmax7.2x10.8y252,故开设20个初中班和10个高中班,收取的学费最多,为252万元。,例6:一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?,解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:,x,y,o,解:设生产甲种肥料x车皮、乙种肥料y车皮,能够产生利润Z万元。目标函数为Zx0.5y,可行域如图:,把Zx0.5y变形为y2x2z,它表示斜率为2,在y轴上的截距为2z的一组直线系。,x,y,o,由图可以看出,当直线经过可行域上的点M时,截距2z最大,即z最大。,故生产甲种、乙种肥料各2车皮,能够产生最大利润,最大利润为3万元。,M,容易求得M点的坐标为(2,2),则Zmin3,三、练习题,某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元,甲、乙产品都需要在A、B两种设备上加工,在每台A、B上加工1件甲所需工时分别为1h、2h,A、B两种设备每月有效使用台数分别为400h和500h。如何安排生产可使收入最大?,解:设每月生产甲产品x件,生产乙产品y件,每月收入为z,目标函数为Z3x2y,约束条件是,X,Y,O,400,200,250,500,如图,当直线经过点M时,截距最大,Z最大。,M,解方程组,可得M(200,100),Z的最大值为3x2y800,故生产甲产品200件,乙产品100件,收入最大,为80万元。,例7:某工厂现有两种大小不同规格的钢板可截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:,解:设需截第一种钢板x张,第二种钢板y张,钢板总张数为Z,则,2x+y15,x+2y18,x+3y27,x0,y0,某顾客需要A,B,C三种规格的成品分别为15,18,27块,若你是经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张数最少。,X张,y张,分析问题:,目标函数:z=x+y,2x+y=15,x+3y=27,x+2y=18,x+y=0,直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解.,作出直线L:x+y=0,,目标函数:z=x+y,A(3.6,7.8),当直线L经过点A时z=x+y=11.4,x+y=12,解得交点B,C的坐标B(3,9)和C(4,8),2,4,6,18,12,8,27,2,4,6,8,10,15,但它不是最优整数解.,作直线x+y=12,答(略),约束条件:,画可行域,平移L找交点及交点坐标,调整优解法,1.满足哪些条件的解才是最优解?,2.目标函数经过A(3.6,7.8)时Z的值是多少?你能否猜测一下Z的最小值可能是多少?,3.最优解的几何意义是什么(最优解可以转化为什么几何意义)?,图例题4.gsp示,2x+y=15,x+3y=27,x+2y=18,x+y=0,经过可行域内的整点B(3,9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养殖场地合作合同
- 停车场特许经营权合同
- 吊装作业安全合同
- 住房房屋出租合同
- 产品买卖居间合同
- 土地复垦合同经典
- 存货质押贷款合同
- 鱼塘合同协议
- 废料协议合同
- 转让合同保密协议
- 长期护理保险技能比赛理论试题库300题(含各题型)
- 二重积分的概念与性质演示文稿
- 医院双重预防机制建设工作完成情况
- 大学生劳动教育通论知到章节答案智慧树2023年大连海洋大学
- 2003高教社杯全国大学生数学建模竞赛B题竞赛参考答案
- 污水处理厂工程其他费用取费标准、计算规则模板
- AB股公司章程(同股不同权)
- GB/T 6060.2-1985表面粗糙度比较样块磨、车、镗、铣、插及刨加工表面
- GB/T 34630.3-2017搅拌摩擦焊铝及铝合金第3部分:焊接操作工的技能评定
- MTS4000光时域反射仪
- GB/T 24918-2010低温介质用紧急切断阀
评论
0/150
提交评论