![解放CA1092货车双级主减速器驱动桥设计说明书_第1页](http://file.renrendoc.com/FileRoot1/2014-6/5/3f9fae12-76c6-4cef-98df-8e85bdef6e9c/3f9fae12-76c6-4cef-98df-8e85bdef6e9c1.gif)
![解放CA1092货车双级主减速器驱动桥设计说明书_第2页](http://file.renrendoc.com/FileRoot1/2014-6/5/3f9fae12-76c6-4cef-98df-8e85bdef6e9c/3f9fae12-76c6-4cef-98df-8e85bdef6e9c2.gif)
![解放CA1092货车双级主减速器驱动桥设计说明书_第3页](http://file.renrendoc.com/FileRoot1/2014-6/5/3f9fae12-76c6-4cef-98df-8e85bdef6e9c/3f9fae12-76c6-4cef-98df-8e85bdef6e9c3.gif)
![解放CA1092货车双级主减速器驱动桥设计说明书_第4页](http://file.renrendoc.com/FileRoot1/2014-6/5/3f9fae12-76c6-4cef-98df-8e85bdef6e9c/3f9fae12-76c6-4cef-98df-8e85bdef6e9c4.gif)
![解放CA1092货车双级主减速器驱动桥设计说明书_第5页](http://file.renrendoc.com/FileRoot1/2014-6/5/3f9fae12-76c6-4cef-98df-8e85bdef6e9c/3f9fae12-76c6-4cef-98df-8e85bdef6e9c5.gif)
已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 1 目 录 第 1 章 绪论 .4 1.1 课题研究的目的和意义 .4 1.2 课题研究现状 .5 1.2.1 主减速器型式及其现状 .5 1.2.差速器形式发展现状 .4 1.2.半轴形式发展现状 . . .5 1.2.桥壳形式发展现状 . . .5 1.3 设计主要内容 .9 第 2 章 设计方案的确定 .7 2.1 基本参数的选择 .7 2.2 主减速比的计算 .7 2.3 主减速器结构方案的确定 .8 2.4 差速器的选择 .8 2.5 半轴型式的确定 .9 2.6 桥壳型式的确定 .9 2.7 本章小结 .9 第 3 章 主减速器的基本参数选择与设计计算 . 13 3.1 主减速齿轮计算载荷的计算 . 13 3.2 主减速器齿轮参数的选择 . 14 3.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算 . 15 3.3.1 主减速器螺旋锥齿轮的几何尺寸计算 . 15 3.3.2 主减速器螺旋锥齿轮的强度计算 . 16 3.4 主减速器齿轮的材料及热处理 . 19 3.5 第二级斜齿圆柱齿轮基本参数的选择 . 19 3.6 第二级斜齿圆柱齿轮校核 . 21 3.7 主减速器轴承的计算 . 19 3.8 主减速器的润滑 . 22 3.9 本章小结 . 26 第 4 章 差速器设计 . 27 4.1 差速器的作用 . 27 4.2 对称式圆锥行星齿轮差速器 . 27 摘要 . . .1 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 2 4.2.1 差速器齿轮的基本参数选择 . 28 4.2.2 差速器齿轮的几何尺寸计算与强度计算 . 29 4.4 本章小结 . 29 第 5 章 半轴设计 . 33 5.1 半轴的设计与计算 . 33 5.1.1 全浮式半轴的设计计算 . 33 5.1.2 半轴的结构设计及材料与热处理 . 35 5.2 本章小结 . 36 第 6 章 驱动桥桥壳 设计 . 37 6.1 桥壳的受力分析及强度计算 . 37 6.1.1 桥壳的静弯曲应力计算 . 37 6.1.2 在不平路面冲击载荷作用下桥壳的强度计算 . 38 6.1.3 汽车以最大牵引力行驶时的桥壳的强度计算 . 38 6.1.4 汽车紧急制动时的桥壳强度计算 . 39 6.1.5 汽车受最大侧向力时桥壳的强度计算 . 41 6.2 本章小结 . 43 结论 . 44 参考文献 . 45 致谢 . 46 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 3 摘 要 本次设计的题目是 中型 货车驱动桥设计。驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。 本文首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程,及其以往形式的优缺点的基础上,确定了总体设计方案: 采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普 通对称式圆锥行星齿轮差速器,半轴型式采用全浮式, 桥壳采用 铸造整体式桥壳。 在本次设计中, 主要完成了 双级减速器、圆锥行星齿轮差速器、全浮式半轴、 桥壳的设计工作。 关键词 : 驱动桥;主减速器;全浮式半轴;桥壳;差速器 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 4 第 1 章 绪 论 1.1 课题研究的目的和意义 汽车驱动桥是汽车传动系统的重要组成,承载着汽车的满载荷重及地面经车轮、车架给予的垂直力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩。汽车驱动桥的结构型式和设计参数对汽车动力性、经济性、平顺性、通过 性有直接影响。驱动桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计和性能极其重要 1。 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。主动圆锥齿轮旋转,带动从动圆锥齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带 动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动 2。 随着中国公路建设水平的不断提高,公路运输车辆正向大吨位、多轴化、大马力方向发展,使得重型车桥总成也向传动效率高的单级减速方向发展。但目前我国卡车中,双级减速桥的应用比例还在 60%左右。如我国重卡大量使用的斯太尔驱动桥属于典型的双级减速桥,其一级减速的结构,主减速器总成相对较小,桥包尺寸减小,因此离地间隙加大,通过性好,承载能力也较大,是广泛用于公路运输,以及石 油、工矿、林业、野外作业和部队等多种领域的车辆 3。 本次的设计题目为汽车驱动桥的设计,通过本次的设计能让我们更好的认识驱动桥,了解驱动桥的结构与工作原理,更锻炼了我们的动手能力,同时也更好的掌握了查阅资料的方法,把我们大学所学的知识贯穿到了一起,是我们能够更好的运用自己所学的理论知识,让理论与实践相结合,更好的让自己掌握其中的精髓。设计与专业关系紧密,可综合利用所学的专业课有汽车构造、汽车设计、机械设计、工程材料和CAD 绘图等知识。更为我们以后工作打下了良好的基础。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 5 1.2 课题研究现状 1.2.1 主减速器型式及其现状 主减速器的结构形式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安装 (1)主减速器齿轮的类型 在现代汽车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。 螺旋锥齿轮如图 1.2(a)所示主、从动齿轮轴线交于一点,交角都采用 90 度。螺旋锥齿轮的重合度大,啮合过程是由点到线,因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的 4。 双曲面齿轮如图 1.2(b)所示主、从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有: 尺寸相同时,双曲面齿轮有更大的传动比。 传动比一定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。 图 1.2 螺旋锥齿轮与双曲面齿轮 当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙。 工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。 双曲面齿轮传动有如下缺点: 长方向的纵向滑动使摩擦损失增加,降低了传动效率。 齿面间有大的压力 和摩擦功,使齿轮抗啮合能力降低。 双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。 双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油 5。 (2)主减速器主动锥齿轮的支承形式及安装方式的选择 现在汽车主减速器主动哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 6 锥齿轮的支承形式有如下两种: 悬臂式 悬臂式支承结构如图 1.3 所示,其特点是在锥齿轮大端一侧采用较长的轴径,其上安装两个圆锥滚子轴承。为了减小悬臂长度 a 和增加两端的距离 b,以改善支承刚度,应使两轴承圆锥滚子向外。悬臂式支承结构简单,支承刚度较差,多用于传递转钜较小的轿车、 轻型货车的单级主减速器及许多双级主减速器中。 图 1.3 锥齿轮悬臂式支承 骑马式 骑马式支承结构如图 1.4 所示,其特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,在需要传递较大转矩情况下,最好采用骑马式支承。 图 1.4 主动锥齿轮骑马式支承 (3)从动锥齿轮的支承方式和安装方式的选择 从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母 调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上 6。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的 1/2。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的 30。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 7 主动锥齿轮轴承预紧度的调整采用 套筒与垫片,从动锥齿轮轴承预紧度的调整采用调整螺母。 (5)主减速器的减速形式 主减速器的减速形式分为单级减速、双级减速 (如图2.5)、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比 io的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。通常单极减速器用于主减速比 io 7.6 的各种中小型汽车上。 1.2.2 差速器型式发展现状 根据汽车行驶运动学的要求和实际的车轮 、道路以及它们之间的相互联系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求 (a) 单级主减速器 (b) 双级主减速器 图 1.5 主减速器 车轮行程不等。 在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨、无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 8 的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具 有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。 差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。 差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了 防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的 7。 1.2.3 半轴型式发展现状 驱动车轮的传动装置置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减 速器的主动齿轮连接起来。 半浮式半轴具有结构简单、质量小、尺寸紧凑、造价低廉等优点。主要用于质量较小,使用条件好,承载负荷也不大的轿车和轻型载货汽车。 3/4 浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。 全浮式半轴广泛应用于轻型以上的各类汽车上 ,本设计采用此种半轴 8。 1.2.4 桥壳型式发展现状 驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到悬挂及车 架或车厢上。因此桥完既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置 (如半轴 )的外壳 9。 在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等 10。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 9 结构形式分类:可分式、整体 式、组合式。 按制造工艺不同分类: 铸造式 强度、刚度较大,但质量大,加工面多,制造工艺复杂,用于中重型货车,本设计采用铸造桥壳。 钢板焊接冲压式 质量小,材料利用率高,制造成本低,适于大量生产,轿车和中小型货车,部分重型货车 11。 1.3 设计主要内容 (1) 完成驱动桥 的 主减速器、差速器、半轴、驱动桥桥壳的结构形式选择 (2) 完成主减速器的基本参数选择与设计计算 (3) 完成差速器的设计与计算 (4) 完成半轴的设计与计算 (5) 完成驱动桥桥壳的受力分析及强度计算 (6) 绘制装配图及零件图 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 10 第 2 章 设计方案的确定 2.1 基本参数的选择 技术参数: 发动机最大功率 Pemax kW/np (r/min) 99/3000 发动机最大转矩 Temax N m/nr (r/min) 373/1300 最大装载质量 kg 5000 汽车总质量 kg 9250 最高车速 km/h 90 后轮轮距 mm 1740 最小离地间隙 mm 265 轮胎 (轮辋宽度 -轮辋直径 ) 英寸 9.00 20 2.2 主减速比的计算 主减速比对主减速器的结构形 式 、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。0i的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择 0i 值,可是汽车获得最佳的动力性和燃料经济性。 为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大 10% 25%,即按下式选择: 0i =0.377ghapr iv nrmax=0.3770.4933000/(901)=6.25 (2.1) 式中: r 车轮的滚动半径 r =0.02542d +(1- )b=0.493(m) 轮辋直径 d=20 英寸轮辋宽度 b=9 英寸, =0.05; ghi 变速器最高档传动比 1.0(为直接档 )。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 11 2.3 主减速器结构方案的确定 (1)主减速器齿轮的类型 螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。本次设计采用螺旋锥齿轮 4。 (2)主减速器主动锥齿轮的支承形式及安装方式的选择 本次设计选用: 主动锥齿轮:悬臂式支撑 (圆锥滚子轴承 ) 从动锥齿轮:骑马式支撑 (圆锥滚子轴承 ) (3)从动锥齿轮的支承方式 和安装方式的选择 从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上 5。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的 1/2。预紧力虽然可以增大支承刚 度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的 30。 主动锥齿轮轴承预紧度的调整采用波形套筒,从动锥齿轮轴承预紧度的调整采用调整螺母。 (5)主减速器的减速形式 主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比的大小及驱动桥下的离地间隙、驱 动桥的数目及布置形式等。 本次设计采用双级减速,主要从传动比及它是载重量超过 6t 的重型货车和保证离地间隙上考虑。 2.4 差速器的选择 差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。 差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所 谓轮间差速器使用;对于经常哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 12 行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。但对于本设计的车型来说只选用普通的对称式圆锥行星齿轮差速器即可。 本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。 2.5 半轴型式的确定 3/4 浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。全浮 式半轴广泛应用于轻型以上的各类汽车上。本次设计选择全浮式半轴。 2.6 桥壳型式的确定 整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一个整体的空心梁,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。使主减速器和差速器的拆装、调整、维修、保养等都十分方便。其主要缺点是桥壳不能做成复杂而理想的断面,壁厚一定,故难于调整应力分布。 铸造式桥壳 强度、刚度较大 多 用于重型货车。 本次设计驱动 桥壳就选用 铸 造 式 整体式桥壳。 2.7 本章小结 本章 首先确定了主减速比,以方便确定其它参数。对主减速器型式确定中主要从主减速器齿轮的类型 、 主减速器主动锥齿轮的支承形式及安装方式的选择 、 从动锥齿轮的支承方式和安装方式的选择 、 主减速器的轴承预紧及齿轮啮合调整 及 主减速器的减速形式 上得以确定从而逐步给出 驱动桥 各个总成 的基本 结构 , 分析了驱动桥各总成结构组成 。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 13 第 3 章 主减速器的基本参数选择与设计计算 3.1 主减速齿轮计算载荷的计算 通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情况下作 用于主减速器从动齿轮上的转矩 (jje TT ,)的较小者,作为载货汽车计算中用以验算主减速器从动齿轮最大应力的计算载荷。即 TTLeje KiTT 0m a x/n=5335 ( mN ) (3.1) LBLBrj i rGT 2=9925( mN ) (3.2) 式中:maxeT 发动机最大转矩 373 mN ; TLi 由发动机到所计算的主 减 速器从动齿轮之间的传动系最低档传动比; TLi = 0i 1i =27.64=15.28 m a x m a x1m a x 0( c o s s i n )rt g TG f riTi 根 据同类型车型的变速器传动比选取 1i =7.64 T 上述传动部分的效率,取 T =0.9; 0K 超载系数,取 0K =1.0; n 驱动桥数目 1; 2G 汽车满载时驱动桥给水平地面的最大负荷, N;但后桥来说还应考虑 到汽车加速时负荷增大量,可初取: 2G = 满G 9.860%=68208N; LBLB i, 分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减速比 ,分别取 0.96 和 3.125; 由式 (3.1),式 (3.2)求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作为疲劳损坏依据。对于公路车辆来说,使用条件较非公路用车辆稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即 主加速器的平均计算转矩为 jmT= )()(PHRLBLB rTa fffnirGG =1009( mN ) (3.3) 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 14 式中:aG 汽车满载总重 9450 9.8 N; TG 所牵引的挂车满载总重 ,N, 仅用于牵引车取 TG =0; Rf 道路滚动阻力系数,货车通常取 0.015 0.020,可初取 Rf =0.015; Hf 汽车正常使用时的平均爬坡能力系数。货车通常取 0.05 0.09,可初取Hf =0.05; Pf 汽车性能系数 )(1 9 5.0161 0 01m a xeTaP T GGf (3.4) 当 m ax)(195.0eTaT GG =46.8616 时,取 Pf =0 3.2 主减速器齿轮参数的选择 (1)齿数的选择 对于普通双级主减速器,由于第一级的减速比 i01 比第二级的 i02小些 (通常 i01/ i021.4 2.0),这时,第一级主动锥齿轮的齿数 z1 可选的较大,约在 915 范围内。第二级圆柱齿轮传动的齿数和,可选在 6810 的范围内。 (2)节圆直径地选择 根据从动锥齿轮的计算转矩 (见式 3.2, 式 3.3 并取两者中较小的一个为计算依据 )按经验公式选出: 32 2 jd TKd (3.5) 式中:2dK 直径系数,取2dK=13 16; jT 计算转矩, mN ,取jT,jeT较小的。 计算得, 2d =227.15 279.57mm ,初取 2d =230mm。 (3)齿轮端面模数的选择 2d 选定后,可按式 22 / zdm 算出从动齿轮大端模数,并用下式校核 3t mjm K T =8.39.6 22 / zdm =8.84 m取 9 (4) 齿面宽的选择 汽 车 主 减 速 器 螺 旋 锥 齿 轮 齿 面 宽 度 推 荐 为 :F=0.155 2d =35.65mm,可初取 F2 =36mm。 (5)螺旋锥齿轮螺旋方向 一般情况下主动齿轮为左旋,从动齿轮为右旋,以使二齿轮的轴向力有互相斥离的趋势。 (6)螺旋角的选择 螺旋角应足够大以使 Fm 1.25。因 Fm 愈大传动就愈平稳噪声就愈 低。螺旋角过大时会引起轴向力亦过大,因此应有一个适当的范围。在一般机械制造用的标准制中,螺旋角推荐用 35。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 15 3.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算 3.3.1 主减速器螺旋锥齿轮的几何尺寸计算 主减速器圆弧齿螺旋锥齿轮的几何尺寸计算 双重收缩齿的优点在于能提高小齿轮粗切工序。双重收缩齿的齿轮参数,其大、小齿轮根锥角的选定是考虑到用一把实用上最大的刀顶距的粗切刀,切出沿齿面宽方向正确的齿厚收缩来。当大齿轮直径大于刀盘半径时采用这种方法是最好的。 主减速器锥齿轮的几何尺寸计算见表 3.1。 表 3.1 主减速器锥齿轮的几何尺寸计算用表 序号 项 目 计 算 公 式 计 算 结 果 1 主动齿轮齿数 1z 13 2 从动齿轮齿数 2z 26 3 模数 m 9 4 齿面宽 b b 36 5 工作齿高 mHhg 1 gh 15.3 6 全齿高 mHh 2 h =20 7 法向压力角 =22.5 8 轴交角 =90 9 节圆直径 d =m z 1d 117 2d = 234 10 节锥角 1arctan21zz 2 =90- 1 1 =26.57 2 =63.43 11 节锥距 A0 =11sin2 d =22sin2 d A0 =119.4 12 周节 t=3.1416 m t=28.27 13 齿顶高 21 aga hhh mkh aa 2 1ah =11.97mm 2ah =3.33mm 14 齿根高 fh = ahh 1fh=5.022mm 2fh =13.662mm 15 径向间隙 c= ghh c=1.16 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 16 序号 项 目 计 算 公 式 计 算 结 果 16 齿根角 0ar c tan Ah ff 1f =2.2 2f =5.96 17 面锥角 211 fa ; 122 fa 1a=32.53 2a =65.63 18 根锥角 1f= 11 f 2f = 22 f 1f =24.37 2f =57.47 19 齿顶圆直径 1111 c o s2 aa hdd 2ad = 221 cos2 ahd 1ad =138 2ad =241 20 节锥顶点止齿轮外缘距离 1121 s in2 ak hdA 212 dAk 22 sin ah 1kA =119.766 2kA =59.978 21 理论弧齿厚 21 sts mSs k2 1s =53.15mm 2s =164.02mm 22 齿侧间隙 B=0.305 0.406 0.300mm 23 螺旋角 =35 3.3.2 主减速器螺旋锥齿轮的强度计算 在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。 螺旋锥齿轮的强度计算: (1)主减速器螺旋锥齿轮的强度计算 单位齿长上的圆周力 FPp (3.6) 式中: p 单位齿长上的圆周力, N/mm; P 作用在齿轮上的圆周力, N,按发动机最大转矩 maxeT 和最大附着力矩两种载荷工况进行计算; 按发动机最大转矩计算时: FdiTp ge21013m a x=1353.141429N/mm (3.7) 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 17 按最大附着力矩计算时 : FdrGp r210232 =4754.25 /N mm (3.8) 虽然附着力矩产生的 p 很大,但由于发动机最大转矩的限制 p 最大只有 1353.13 N/mm 可知,校核成功。 轮齿的弯曲强度计算。汽车主减速器螺旋锥齿轮轮齿的计算弯曲应力)/( 2mmNw 为 JmzFKKKKTvmSjw 203102 (3.9) 式中:0K 超载系数 1.0; sK 尺寸系数sK=4 4.25m=0.772; mK 载荷分配系数 1.11.25; vK 质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径向跳动精度高时,取 1; J 计算弯曲应力用的综合系数,见图 3.1,210 .3 , 0 .3 5JJ 图 3.1 弯曲计算用综合系数 J jeT作用下: 从动齿轮上的应力 2w =310.34MPa700MPa; jmT作用下: 从动齿轮上的应力 2w =120.17MPa210.9MPa; 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 18 当计算主动齿轮时,jT/Z 与从动相当,而12 JJ ,故1w2w, 1w 2w 综上所述,故所计算的齿轮满足弯曲强度的要求。 汽车主减速器齿轮的损坏形式主要时疲劳损坏,而疲劳寿命主要与日常行驶转矩即平均计算转矩jmT有关,jmje TT 或只能用来检验最大应力,不能作为疲劳寿命的计算依据。 (2)轮齿的接触强度计算 螺旋锥齿轮齿面的计 算接触应力j(MPa)为: JFKKKKKTdCvfmsjpj 3011102 (3.10) 注: 0K=1, sK=1, mK=1.11, vK =1 pC 材料的弹性 系数,对于钢制齿轮副取 232.6 mmN /21 ; fK 表面质量系数,对于制造精确的齿轮可取 1; J 计算应力的综合系数, 2J =0.12,见图 3.2 所示; jm=211.2MPajm=2800MPa je=1313.68MPaje=1750MPa,故符合要求、校核合理。 图 3.2 接触强度计算综合系数 J 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 19 3.4 主减速器齿轮的材料及热处理 汽车驱动桥主减速器的工作相当繁重,与传动系其他齿轮比较,它具有载荷大、工作时间长、载荷变化多、带冲击等特点。其损坏形式主要有齿根弯曲折断、齿面疲劳点蚀 (剥落 )、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有以下要求: (1)具有高的弯曲疲劳强度和接触疲劳强度以及较好的齿面耐磨性,故齿表面应有高的硬度; (2)轮齿芯部应有适当的韧性以 适应冲击载荷,避免在冲击载荷下轮齿根部折断; (3)钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律性易控制,以提高产品质量、减少制造成本并降低废品率; (4)选择齿轮材料的合金元素时要适应我国的情况。例如 :为了节约镍、铬等我国发展了以锰、钒、硼、钛、钼、硅为主的合金结构钢系统。 汽车主减速器和差速器圆锥齿轮与双曲面齿轮目前均用渗碳合金钢制造。常用的钢号 C rM nM oC rM nT i 22,20 , M nV BCrNiM o 20,20 ,及 TiBMn220 ,在本设计中采用了CrMnTi20 。 用渗碳合金钢制造齿轮,经渗碳、淬火、回火后,齿轮表面硬度可高达 HRC5864,而芯部硬度较低,当 m 8 时为 HRC32 45。 对于渗碳深度有如下的规定:当端面模数 m 5 时,为 0.9 1.3mm。 由于新齿轮润滑不良,为了防止齿轮在运行初期产生胶合、咬死或擦伤,防止早期磨损,圆锥齿轮与双曲面齿轮副草热处理及精加工后均予以厚度为 0.005 0.0100.020mm 的磷化处理或镀铜、镀锡。这种表面镀层不应用于补偿零件的公差尺寸,也不能代替润滑。 对齿面进行喷丸处理有可能提高寿命达 25。对于滑动速度高的齿轮,为了提高其耐磨性进行渗硫处理。渗硫处理时温度低,故不会引起齿轮变形。渗硫后摩擦系数可显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和擦伤等现象产生。 3.5 第二级斜齿圆柱齿轮基本参数的选择 双级主减速器的圆柱齿轮副中心距 A及齿宽 b可按如下经验公式预选: 392.1151.10 jzTA =183.65208.28 mm 初取 200mm jzT = 5335 mN Ab 41.038.0 =7682mm 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 20 螺旋角 取 20 压力角取 20 nM取( 3.504.50),取 4 mm 由c os2)( 43034ZZmAZZin 得 3Z =23 4Z =72 对 A 进行修正得 202mm 表 3.2 主减速器 第二级斜 齿轮的几何尺寸计算用表 序号 项 目 计 算 公 式 计 算 结 果 1 主动齿轮齿数 1z 23 2 从动齿轮齿数 2z 72 3 法向 模数 nm 4 4 齿宽 b b 28 5 螺旋角 20 6 标准中心距 0A 0A =202 7 法向压力角 =20 8 分度圆直径 d 1d =98mm 2d =306mm 9 齿顶高 ah = amh nm 1ah 4 2ah = 4 10 齿根高 fh 1fh=5mm 2fh =5mm 11 全齿高 h h=9 12 齿顶圆直径 ad 1ad=106mm 2ad =314mm 13 齿根圆直径 fd 1fd=88mm 2fd =297mm 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 21 3.6 第二级斜齿圆柱齿轮校核 ( 1)齿轮弯曲强度校核 btyKKFw 1 式中: 1F 圆周力( N), dTF g21 ; gT 计算载荷( Nmm ); d 节圆直径( mm),c oszmd n , nm 为法向模数( mm); 斜齿轮螺旋角 )( ; K 应力集中系数,K=1.50; b 齿面宽( mm); y 齿形系数,可按当量齿数 3coszzn 在齿形系数图 3.2 中查得; K 重合度影响系数,K=2.0。 图 3.3 齿形系数图 将上述有关参数据代入 公式( 3.15) ,整理得到 KyKzm KTcngw3c o s2 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 22 KyKzm KTcngw 3c os23 =190.97MPa KyKzm KTcngw 3c os24 =222.74MPa 对于 货车 当计算载荷取变速器输入轴最大转距时,其许用应力不超过 100250MPa, 所以 均合适。 ( 2)齿轮接触应力校核 )11(418.0bzj bFE ( 3.11) 式中: j 轮齿接触应力( MPa); F 齿面上的法向力( N), coscos 1FF ; 1F 圆周力( N), dTF g21 ; gT 计算载荷( Nmm ); d 为节圆直径( mm); 节点处压力角, 为齿轮螺旋角; E 齿轮材料的弹性模量 5101.2 ( MPa); b 齿轮接触的实际宽度( mm); z , b 主从动齿轮节点处的曲率半径( mm),直齿轮 sinzz r , sinbb r斜齿轮2cossinzzr ,2cossinbbr ; zr 、 br 主从动齿轮节圆半径( mm)。 )11(4 1 8.0bzj bFE =0418 )36.59196.181(301 0 0 0 0 006.26 1 7 1 3 =227.6MPa 符合要求。 3.7 主减速器轴承的计算 设计时,通常是先根据主减速器的结构尺寸初步确定轴承的型号,然后验算轴承寿命。影响轴承寿命的主要外因是它的工作载荷及工作条件,因此在验算轴承寿 命之前,应先求出作用在齿轮上的轴向力、径向力、圆周力,然后再求出轴承反力,以确定轴承载荷。 (1)作用在主减速器主动齿轮上的力 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 23 齿面宽中点的圆周力 P 为 mdTP 2 (3.12) 式中: T 作用在该齿轮上的转矩。主动齿轮的当量转矩dT1; md 该齿轮齿面宽中点的分度圆直径。 注:汽车在行驶过程中,由于变速器档位的改变 ,且发动机也不尽处于最大转矩状态,因此主减速器齿轮的工作转矩处于经常变化中。实践表明,轴承的主要损坏形式是疲劳损伤,所以应按输入的当量转矩进行计算。作用在主减速器主动锥齿轮上的当量转矩dT1可按下式求得: 3543223113m a x )100)100()100(1001 TggTggTggefiffiffifTT ( (3.13) 式中:421 , ggg fff 变速器 , , , 档使用率为 1, 3, 5, 16, 75; , ggg iii , 变速器的传动比为 7.64, 4.27, 2.61, 1.59, 1.00; 421 , TTT fff 变速器处于 , , , 档时的发动机转矩利用率 50,60, 70, 70, 60。 对于螺旋锥齿轮 222 s inFdd m =202(mm) (3.14) 2121 ZZdd mm =101(mm) (3.15) 式中: mm dd 21 , 主、从动齿轮齿面宽中点的分度圆直径; F 从动齿轮齿面宽 2 从动齿轮的节锥角 63.43 ; 计算得 1P = 2P =52820N 螺旋锥齿轮的轴向力与径向力 主动齿轮的螺旋方向为左;旋转方向为顺时针: )c oss i ns i n( t a nc os 111 PA =22600(N) (3.16) )s i ns i nc os( t a nc os 111 PR =37530(N) (3.17) 从动齿轮的螺旋方向为右: 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 24 )c oss i ns i n( t a nc os 222 PA =43610(N) (3.18) )s i ns i nc os( t a nc os 222 PR =4439(N) (3.19) 式中: 齿廓表面的法向压力角 22.5 ; 21, 主、从动齿轮的节锥角 26.57 , 63.43 。 (2)主减速器轴承载荷的计算 轴承的轴向载荷,就是上述的齿轮轴向力。而轴承的径向载荷则是上述齿轮径向力、圆周力及轴向力这三者所引起的轴承径向支承反力的向量和。当主减速器的齿轮尺寸、支承型试和轴承位置已确定,并算出齿轮的径向力、轴向力及圆周力以后,则可计算出轴承的径向载荷。 悬臂式支承主动锥齿轮的轴承径向载荷 如图 3.3(a) 所示轴承 A、 B 的径向载荷为 212 )5.0()(1 mA dAbRbPaR =12022(N) (3.20) 212 )5.0()(1 mB dAcRcPaR =13368.21(N) (3.21) (a) (b) 图 3.3 主减速器轴承的布置尺寸 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 25 其尺寸为: 悬臂式支撑的主动齿轮 a=65,b=30,c=95; 式中: P 齿面宽中点处的圆周力; A 主动齿轮的轴向力; R 主动齿轮的径向力; md1 主动齿轮齿面宽中点的分度圆直径。 双级减速器的从动齿轮的轴承径向载荷 轴承 C、 D 的径向载荷分别为 222 Re)(5.01 fPPefRdAAdgR mC =5305.9(N) (3.22) 222 )(5.01 kPPckRRcdAAdgR mD =24561.4(N) (3.23) 式中: P 齿面宽中点处的圆周力; A 从动齿轮的轴向力; R 从动齿轮的径向力; , RAP 第二级减速斜齿圆柱齿轮的圆周力、轴向力和径向力; d 第二级减速主 动齿轮的节圆直径; md2 从动齿轮齿面宽中点的分度圆直径。 2 dTP (3.24) tan PA (3.25) c os/t a n PR (3.26) 式中: T 计算转矩; 斜齿圆柱齿轮的螺旋角; 法向压力角。 3.8 主减速器的润滑 主加速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为其润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿 轮的前端近主动齿轮处的主减速壳的内壁上设一专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过近油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。这样不但可使轴承哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 26 得到良好的润滑、散热和清洗,而且可以保护前端的油封不被损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。 为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者 应避开油溅所及之处。 加油孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。 3.9 本章小结 本章根据所给参数确定了主减速器的参数, 对主减速器齿轮计算载荷的计算、齿轮参数的选择,螺旋锥齿轮的几何尺寸计算与强度计算 并对主减速器 齿轮的材料及热处理, 轴承的预紧, 主减速器的 润滑 等 做了必要的交待。 选择了机械设计、机械制造的标准参数。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 27 第 4 章 差速器设计 4.1 差速器的作用 差速器作用:分配两输出轴转矩,保证两输出轴有可能以不同角速度转动 。 本次设计选用的普通锥齿轮式差速器结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。 4.2 对称式圆锥行星齿轮差速器 由于本车为中型汽车,则普通的对称式圆锥行星齿轮差速器 (如图 4.1)由差速器左 图 4.1 普通的对称式圆锥行星齿轮差速器 壳为整体式, 2 个半轴齿轮, 4 个行星齿轮,行星齿轮轴,半轴齿轮以及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等优点,所以本设计采用采用该结构。 由于差速器壳是装在主减速器从动齿轮上,故在确定主减速器从动齿轮尺寸时,应考虑差速 器的安装。差速器的轮廓尺寸也受到从动齿及主动齿轮导向轴承支座的限制。普通圆锥齿轮差速器的工作原理图,如图 4.2 所示: 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 28 图 4.2 普通圆锥齿轮差速器的工作原理图 4.2.1 差速器齿轮的基本参数选择 (1)行星齿轮数目的选择 4 个行星齿轮。 (2)行星齿轮球面半径 BR (mm)的确定 圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径 BR ,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,在一定程度上表征了差速器的强度。 球面半径可根据经验公式来确定: 3jBB TKR =63.51(mm) (4.1) 圆整取 BR =75mm 式中 : BK 行星齿轮球面半径系数, 2.52 2.99,取 2.52; BR 确定后,即根据下式预选其节 锥距: 0A =(0.98 0.99) BR =62.23 62.87mm 取 64mm (4.2) (3)行星齿轮 与半轴齿轮齿数的选择 为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少,但一般不应少于 10。半轴齿轮的齿数采用 14 25。半轴齿轮与行星齿轮的齿数比多在 1.5 2 范围内。取 1z =12, 2z =20。 在任何圆锥行星齿轮式差速器中,左、右两半轴齿轮的齿数 RL zz 22 , 之和,必须能被行星齿轮的数目 n所整除,否则将不能安装,即应满足: 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 29 nzz rL 22= 42020=11 (4.3) (4)差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定 先初步求出行星齿轮和半 轴齿轮的节锥角 21, : ;03.59a r c t a n;96.30a r c t a n1221 21 zzzz (4.4) 式中 : 21,zz 行星齿轮和半轴齿轮齿数。 再根据下式初步求出圆锥齿轮的大端模数: 22 011 0 s i n2s i n2 zAzAm =5.49 (4.5) 取标准模数 6; 式中 :210 , zzA在前面已初步确定。 算出模数后,节圆直径 d 即可由下式求得: mmmzdmmmzd 120;7221 21 (4.6) (5)压力角 目前汽车差速器齿轮大都选用 3022 的压力角,齿高系数为 0.8,最少齿数可减至 10,并且再小齿轮 (行星齿轮 )齿顶不变尖的情况下还可由切相修正加大半轴齿轮齿厚,从而使行星齿轮 与半轴齿轮趋 于等强度。 (6)行星齿轮安装孔直径 及其深度 L 的确定 行星齿轮安装孔 与行星齿轮名义直径相同,而行星齿轮安装孔的深度 L 就是行星齿轮在其轴上的支承长度。 1.1L =37.21(mm) nlTLc 101.1 302 nlTC 1.110 30 =33.82 mm (4.7) 式中 : 0T 差速器传递的转矩 16672 mN ; n 行星齿轮数 4; l 行星齿轮支承面中点到锥顶的距离, mm. 25.0 dl , 2d 是半轴齿轮齿面宽中点处的直 径 22 8.0 dd ,l=48mm; c 支承面的许用挤压应力,取为 69MPa。 4.2.2 差速器齿轮的几何尺寸计算与强度计算 表 4.1 为汽车差速器用直齿锥齿轮的几何尺寸计算步骤,表中计算用的弧齿厚系数 见图 4.3。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 30 表 4.1 汽车差速器直齿锥齿轮的几何尺寸计算表 序号 项 目 计 算 公 式 及 结 果 1 行星齿轮齿数 121z 2 半轴齿轮齿数 202 z 3 模数 6m 4 齿面宽 030.0 AF =19.2mm,取 F=22m 5 齿工作高 gh=1.6m=9.6mm 6 齿全高 h=1.788m+0.051=10.779mm 7 压力角 3022 8 轴交角 90 9 节圆直径 mmmzdmmmzd 120;7221 21 10 节锥角 ;03.59a r c t a n;96.30a r c t a n 1221 11 zzzz 11 节锥距 A0 = 11sin2 d = 22sin2 d =69.98mm 12 周节 t=3.1416m=18.85mm 13 齿顶高 1 2 22210 . 3 76 . 2 2 ; 0 . 4 3 3 . 3 8()gh h h m m h mZZ 14 齿根高 1 1 2 21 . 7 8 8 4 . 5 0 8 ; 1 . 7 8 8 7 . 3 4 8h m h m m h m h m m 15 径向间隙 0 . 1 8 8 0 . 0 5 1 1 . 1 7 9gc h h m m m 16 齿根角 121200a r c t a n 3 . 6 8 6 ; a r c t a n 5 . 9 9 4ohhAA 17 面锥角 0 1 1 2 0 2 2 13 6 . 9 5 ; 6 2 . 7 2 18 根锥角 1 1 1 2 2 22 7 . 2 7 ; 5 3 . 0 5RR 19 外圆直径 0 1 1 1 1 0 2 2 2 22 c o s 8 3 ; 2 c o s 1 2 3d d h m m d d h m m 20 节锥顶点至齿轮外缘距离 210 1 1 1 0 2 2 2s i n 5 6 . 8 0 ; s i n 2 7 . 1 022ddh m m h m m 21 理论弧齿厚 1 2 2 1 21 1 . 7 4 ; ( ) t a n 7 . 1 12tS t S m m S h h m m m 22 齿侧间隙 0.189B mm (高精度 ) 注 :实际齿根高比上表计算值大 0.051mm。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 31 图 4.3 汽车差速器直齿锥齿轮切向修正系数 (弧齿系数 ) 差速器齿轮主要进行弯曲强度 计算,而对于疲劳寿命则不予考虑 ,这是由于行星齿轮在差速器的工作中经常只起等臂推力杆的作用,仅在左 /右驱动车轮有转速差时行星齿轮和半轴齿轮之间有相对滚动的缘故。 汽车差速器齿轮的弯曲应力为 JmFzKKKTKvmsw 2203102 (4.8) 式中: T 差速器一个行星齿轮给予一个半轴齿轮的转矩, mN ; nTT j 6.0 (4.9) 0 . 6 0 . 62 5 0 0 . 8 ;44j e j memTTT N m T m m 472.5 n 差速器行星齿轮数目 4; 2z 半轴齿轮齿数 20; 0K 超载系数 1.0; vK 质量系数 1.0; sK 尺寸系数4 0 . 6 9 72 5 . 4s mK ; mK 载荷分配系数 1.1; F 齿面宽 22mm; m 模数 6; 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 32 J 计算汽车差速器齿轮弯曲应力的总和系数 0.226,见图 4.4。 图 4.4 弯曲计算用综合系数 J 以jeT计算得:w=847.02 MPaw980 MPa 以jmT计算得:w=200.6MPaw210.9Mpa 综上所述,差速器齿轮强度满足要求。 4.3 本章小结 本章 首先说明了 差速器 作用及工作原理,对对称式圆锥行星齿轮差速器的基本参数进行了必要的设计计算,对差速器齿轮的几何尺寸及强度进行了必要的计算 , 最终确定了所设计 差速器 的各个参数,取得机械设计、机械制造的标准值并满足了强度计算 和 校核。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 33 第 5 章 半轴设计 5.1 半轴的设计与计算 半轴的主要尺寸是它的直径,设计计算时首先应合理地确定其计算载荷。 半轴计算应考虑到以下三种可能的载荷工况: (1)纵向力 2X (驱动力或制动力 )最大时 ( 2X = 2Z ),附着系数 取 0.8,没有侧向力作用; (2)侧向力 Y2 最大时,其最大值发生于侧滑时,为 Z21,侧滑时轮胎与地面的侧向附着系数 1 在计算中取 1.0,没有纵向力作 用; (3)垂向力最大时,这发生在汽车以可能的高速通过不平路面时,其值为 (Z2-gw)kd,kd 是动载荷系数,这时没有纵向力和侧向力的作用。 5.1.1 全浮式半轴的设计计算 (1)全浮式半轴在上述第一种工况下 纵向力应按最大附着力计算,即 2 222GmXXRL =35468.16N (5.1) 式中: 2G 满载静止汽车的驱动桥对水平地面的载荷,取 68208N; m 汽车加速和减速时的质量转移系数,对于后驱动桥可取 1.3; 轮胎与的地面的附着系数 0.8; 对于驱动车轮来说,当按发动机最大转矩及传动系最低档传动比计算所得的纵向力小于按最大附着力所决定的纵向力时,则按下式计算,即 LX2 或 rTTLeR riTX /m a x2 =19508.7N (5.2) 式中: 差速器的转矩分配系数 0.6; maxeT 发动机最大转矩 373 mN ; TLi 传动系最低档传动比 47.75; T 汽车传动效率 0.9; r 轮胎滚动半 径 0.493m。 取两者的较小值,所以 RL XX 22 19508.7N 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 34 转矩为: rRrL rXrXT 229167.8 mN (5.3) 注:第二种和第三种工况未计算 ,图 5.1 为全浮式半轴支承示意图 。 图 5.1 全浮式半轴支承示意图 (2)半轴的设计 杆部直径的选择 设计时,半浮式半轴杆部直径的初步选择可按下式进行: 333 )18.205.2(196.010 TTd 取 d=45 (5.4) 式中: d 半轴杆部直径 , mm; T 半轴的计算转矩, 9167.8 mN ; 半轴转矩许用应力, MPa。因半轴材料取 40MnB, 为 926.1MPa 左右,考虑安全系数在 1.3 1.6 之间,可取 =692MPa; 半轴的扭转应力可由下式计算: 331610dT =537.8 mmN 692MPa (5.5) 式中: 半轴扭转应力, MPa; T 半轴的计算转矩 9167.8 mN ; d 半轴杆部直径 45mm。 半轴花键的剪切应力为: 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 35 3107 1 . 0 5 5 0 0()4ssBA PTDd z L b MPa (5.6) 半轴花键的挤压应力为: 3101 5 8 . 6 1 5 1 2( ) ( )42ccB A B A PTD d D d zL MPa (5.7) 式中: T 半轴承受的最大转矩 , 14965.2 mN ; BD 半轴花键外径 , 52mm; Ad 相配的花键孔内径 , 49.5mm; z 花键齿数 , 16; pL 花键的工作长度 ,65mm; b 花键齿宽 , mm, m21=4.71mm; 载荷分布的不均匀系数,可取为 0.75。 注:花键的选择 (30 渐开线 ) 初选分度圆直径 D=45mm,则模数 m= 3Dz ,取标准模数 m=3 半轴的最大扭转角为 13.7101 8 0 3 GJTl (5.8) 式中: T 半轴承受的最大转矩, 9617.8 mN ; l 半轴长度 870mm; G 材料的剪切弹性模量 8.4104 N/mm2 ; J 半轴横截面的极惯性矩, 432 dJ =402373.83mm4 。 5.1.2 半轴的结构设计及材料与热处理 为了使半轴和花键内径不小于其干部直径,常常将加工花键的端部都做得粗些,并使当地减小花键槽的深度,因此花键齿数必须相应地增加。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。为了使半轴杆部和突缘间的过渡圆角都有较大的半径而不致引起其他零件的干涉,常常将 半轴突缘用平锻机锻造。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 36 本设计半轴采用 40 Cr ,半轴的热处理采用高频、中频感应淬火。这种处理方法使半轴表面淬硬达 6352HRC ,硬化层深约为其半径的 1/3,心部硬度可定为3530HRC ;不淬火区 (突缘等 )的硬度可定在 277248HRC 范围内。由于硬化层本身的强度较高,加之在半轴表面形成大的残余压应力,以及采用喷丸处理、滚压半轴突缘根部过渡圆角等工艺,使半轴的静强度和疲劳强度大 为提高,尤其是疲劳强度提高十分显著。 5.2 本章小结 本章对半轴做了设计计算 。在全浮式半轴的设计计算中首先考虑到 三种可能的载荷工况 ,对 纵向力 (驱动力或制动力 )最大时 , 没有侧向力作用 这一工况进行了计算。做了必要的半轴设计计算并进行了 校核 选取了机械设计、机械制造标准值 ,对材料和热处理做了 必要的 说明。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 37 第 6 章 驱动桥桥壳 设计 6.1 桥壳的受力分析及强度计算 6.1.1 桥壳的静弯曲应力计算 桥壳 犹如一空心横梁,两端经轮毂轴承支承于车轮上,在钢板弹簧座处桥壳支承簧上载荷, 而沿两侧轮胎中心线,地面给轮胎以反力 2/2G (双胎时则沿双胎中心线 ),桥壳则承受此力与车轮重力wg之差值,计算简图如图 6.1 所示。 桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩为 2( ) 2 1 1 4 4 . 522wG BsM g N m (6.1) 由弯矩图 (图 6.1)可见,桥 壳的危险断面通常在钢板弹簧座附近。由于wg大大地小于 2G /2,且设计时不易准确预计,当无数据时可忽略去。 而静弯曲应力为: vwj WM310 =133.1MPa (6.2) 式中: VW 危险断面处桥壳的垂向弯曲截面 34 34( 1 ) 1 5 8 8 9 6 . 732vhDdW W m mD ; tW 扭转截面系数 34 34( 1 ) 3 1 7 7 9 3 . 416tDdW m mD 。 图 6.1 桥壳静弯曲应力的计算简图 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 38 6.1.2 在不平路面冲击载荷作用下桥壳的强度计算 当汽车高速行驶于不平路面上时,桥壳除承受在静载状态下的那部分载荷外,还承受附加的冲击载荷。这时桥壳载动载荷下的弯曲应力为: wjdwd k =332.75MPa (6.3) 式中:dk 动载荷系数,对载货汽车取 2.5; wj 桥壳载静载荷下的弯曲应力, 133.1MPa; 6.1.3 汽车以最大牵引力行驶时的桥壳的强度计算 这时不考虑侧向力。图 6.2 为汽车以最大牵引力行驶时桥壳的受力分析简图。此时作用在左右驱动车轮上除有垂向反力外,尚有切向反力。地面对左右驱动车轮的最大切向反力共为 rTTLe riTP /m a xm a x =32514N (6.4) 式中:maxeT 发动机的最大转矩 373 mN ; TLi 传动系最低档传动比 47.75; T 传动系的传动效率 0.9; r 轮胎的滚动半径 0.493m。 图 6.2 汽车以最大牵引行驶时桥壳的受力分析简 图 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 39 后驱动桥壳在两钢板弹簧座之间的垂向弯曲矩为: 22 22 sBmGM v =25373 mN (6.5) 式中: 2m 汽车加速行驶时的质量转移系数 1.2; 由于驱动车轮的最大切向反力使桥壳也承受水平方向的弯矩,对于装用普通圆锥齿轮差速器的驱动桥,在两弹簧之间桥壳所受的水平方向的弯矩为: m a x 1 0 0 7 9 . 322h P BsM N m (6.6) 桥壳还承受 因驱动桥传递驱动转矩而引起的反作用力矩。这时在两板簧座间桥壳承受的转矩为: mNiTT TTLe 80152m a x (6.7) 式中: TTLe iT ,max 见式 (6.4)下的说明。 当桥壳在钢板弹簧座附近的危险断面 处 为圆管断面时,则在该断面处的合成弯矩为: 2 2 2 2 8 4 5 3 . 8 5vhM M M T N m (6.8) 该危险断面处的合成应力为: 2 2 2 1 7 9 . 0 7 5 0 0vhM M M T M P aWW (6.9) 式中: W 危险断面处的弯曲截面系数 158896.7 3mm 。 图 6.2 给出了汽车以最大牵引力行驶时后驱动桥桥壳的受力分析简图。 6.1.4 汽车紧急制动时的桥壳强度计算 这时不考虑侧向力。图 6.3 为汽车紧急制动时桥壳的手力分析简图 .此时在作用在左右驱动车轮上除有垂向反力 2/22mG 外,尚有切向反力,即地面对驱动车轮的制动力 2/22 mG 。因此可求得: 紧急制动时桥壳在两钢板弹簧座之间的垂向弯矩 vM 及水平方向弯矩 hM 分别为 2 1797322v G BsM m N m (6.11) 2 1437822h G BsM m N m (6.12) 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 40 图 6.3 汽车紧急制动时桥壳的受力分析简图 式中: sBG ,2 见式 (6.1)说明; m 汽车制动时的质量转移系数,对于载货汽车的后桥, m 0.85; 驱动车轮与路面的附着系数 0.8。 桥壳在两钢板弹簧的外侧部分同时还承受制动力所引起的转矩 2 114332 rGT m r N m (6.13) 紧急制动时桥壳在两板簧座附近的危险断面处的合成应力: M P aWTMMWM hv 50073.161222 (6.14) 扭转应力 MPaWT t 4 0 097.35 (6.15) 综上所述 ,满足强度校核要求。 哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 41 6.1.5 汽车受最大侧向力时桥壳的强度计算 当汽车满载、高速急转 弯时,则会产生一想当大的且作用于汽车质心处离心力。汽车也会由于其他原因而承受侧向力。当汽车所承受的侧向力达到地面给轮胎的侧向反作用力的最大值即侧向附着力时,则汽车处于侧滑的临界状态,此时没有纵向力作用。侧向力一旦超过侧向附着力,汽车则侧滑。因此汽车驱动桥的侧滑条件是: NGYYPRL 6 8 2 0 812222 (6.16) 式中: 2P 驱动桥所受的侧向力; RLYY 22, 地面给左、右驱动车轮的侧向反作用力; 2G 汽车满载静止于水平面时驱动桥给地面的载荷 68208N; 1 轮胎与地面的侧向附着系数 1.0。 由于汽车产生纯粹的侧滑,因此计算时可以认为地面给轮胎的切向反作用力 (如驱动力、制动力 )为零。 汽车向右侧滑时,驱动桥侧滑时左、右驱动车轮的支承反力为: NBhGZ gL 12544)21( 122 NBhGZ gR 55664)21( 122 (6.17) 式中: RL ZZ 22 , 左、右驱动车轮的支承反力, N; gh 汽车满载时的质心高度, 0.55m; 12,G 见式 (6.16)下的说明; B 驱动车轮的轮距 1.74m。 钢板弹簧对驱动桥壳的垂向作用力为: NsrhGGTrgL 2 6 9 0 9/)(5.0 1222 NsrhGGTrgR 34847/)(5.0 1222 (6.18) 式中: 2G 汽车满载时车厢通过钢板弹簧作用在驱动桥上的垂向总载荷 14509.874 N; r 弹簧座上表面离地面高度 , 0.472 0.060+0.020=0.372m; ghG , 12 见式 (6.17)下的说明; s 两板簧座中心间的距离 1.19m。 对于半轴为为全浮式的驱动桥,在桥壳两端的半轴套管上,各装着一对轮毂轴承,它们布置在车轮垂向反作用力 2Z 的作用线的两侧,通常比外轴承离车轮中心线更近。哈尔滨工业大学华德应用技 术学院本科生毕业设计(论文) 42 侧滑时内、外轮毂轴承对轮毂的径向支承力 21,SS 如图 6.4 所示,可根据一个车轮的受力平衡求出。 图 6.4 汽车向右侧滑时轮毂轴承对轮毂的径向支承力 S1、 S2 分析用图 (a)轮毂轴承的受力分析用图; (b)桥壳的受力分析用图 汽车向右侧滑时左、右车轮轮毂内外轴承的径向支承力分别为 : NZba bYba rS LLrL 8 9 0 2221 (6.19) NZba aYba rS LLrL 11154222 (6.20) NZba bYba rS RRrR 6.383448221 (6.21) NZba aYba rS RRrR 6.3 6 6 0 6 0222 (6.22) 式中: r 轮胎的滚动半径 292mm; RLRL ZZYYba 2222 , 见图 6.4,其中地面给左右驱动车轮的侧向反作用 Y2L、 Y2R可由下式求得: NZZZY LLLL 2 4 8 60.1 22122 NZZZY RRRR 6 7 3 8 30.1 22122 (6.23) 轮毂内、外轴承支承中心之间的距离 )( ba 愈大,则由侧滑引起的轴承径向力愈小。另外, )( ba 足够大,也会增加车轮的支承刚度。否则,如果将两轴承的距离缩至使两轴承相碰,则车轮的支承刚度会变差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学四年级数学三位数乘两位数单元监控训练题
- 信息安全运维月报
- 志愿填报指南
- 英语全球通行
- 传媒融合电商
- 河南省郑州市惠济区2024-2025学年七年级上学期期末语文试题(解析版)
- 职中学生会申请书
- 银行评级申请书
- 二级建造师之二建建设工程法规及相关知识题库【全国】
- 初级银行管理-银行专业初级《银行管理》模拟试卷2
- 药企销售总经理竞聘
- 开封市第一届职业技能大赛健康照护项目技术文件(国赛)
- 饮酒与糖尿病
- 大学体育与健康 教案 保健(八段锦)4
- 非遗资源数据库建设
- 公路电子收费系统安装合同范本
- 医院培训课件:《伤口评估与测量》
- 期末试卷(试题)-2024-2025学年四年级上册数学沪教版
- 小学五年级美术《青花瓷》
- 《第一单元口语交际:即兴发言》教案-2023-2024学年六年级下册语文统编版
- 情侣自愿转账赠与协议书范本
评论
0/150
提交评论