已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年高二数学上学期期末考试试题 文(含解析)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 1.若集合,集合,则 ( )A. B. C. D. 【答案】C【解析】【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【详解】由A中不等式可得,即,所以,故选C.【点睛】该题考查的是有关集合的运算,属于简单题目.2.若实数,满足约束条件,则的最小值为 ( )A. 2 B. 165 C. 3 D. 4【答案】D【解析】【分析】首先根据题意,画出约束条件对应的可行域,分析目标函数的类型,确定最优解,解方程组求得最优解的坐标,代入求得最大值.【详解】由题意画出可行域如图所示:由z=x2y可得y=12xz,画出直线y=12x,上下移动的过程中,可以发现当直线y=12x12z过点A时取得最小值,解方程组x=0x+y=2,得A(0,2),此时z=022=4,故答案是4.故选D.【点睛】该题考查的是有关线性规划的问题,涉及到的知识点有约束条件对应可行域的画法,线性目标函数可转化为截距来解决,属于简单题目.3.下列命题中,真命题是( )A. x0R,ex00 B. xR,2xx2C. a+b=0的充要条件是ab=1 D. a1,b1是ab1的充分条件【答案】D【解析】A:根据指数函数的性质可知ex0 恒成立,所以A错误B:当x=1 时,2112121 ,所以B错误C:若a=b=0 时,满足a+b=0 ,但ab=1, 不成立,所以C错误D:a1,b1, 则ab1 ,由充分必要条件的定义,a1,b1,是 ab1的充分条件,则D正确故选D【此处有视频,请去附件查看】4.有线性相关关系的变量x,y有观测数据(xi,yi)(i=1,2,.,15),已知它们之间的线性回归方程是y=5x+11,若i=115xi=18,则i=115yi= ( )A. 17 B. 86 C. 101 D. 255【答案】D【解析】【分析】先计算x=1815=1.2,代入回归直线方程,可得y=51.2+11=17,从而可求得结果.【详解】因为i=115xi=18,所以x=1815=1.2,代入回归直线方程可求得y=51.2+11=17,所以i=115yi=1715=255,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.5.若数列an是递增的等比数列,a2a5=20,a1+a6=9,则a11= ( )A. 5 B. 425 C. 254 D. 165【答案】C【解析】【分析】根据数列an是等比数列,得到a2a5=a1a6=20,结合a1+a6=9,从而得到a1,a6是方程x29x+20=0的两个根,再根据an是递增数列,确定a1=4,a6=5,再根据等比数列的性质,得到a11=a62a1=254,求得结果.【详解】因为数列an是等比数列,所以a2a5=a1a6=20,又因为a1+a6=9,所以a1,a6是方程x29x+20=0的两个根,因为数列an是递增数列,所以a1=4,a6=5,所以有a11=a62a1=254,故选C.【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的性质,熟练掌握基础知识是正确解题的关键.6.函数f(x)=log2(3x)+1,x12x,x1,则f(log212)+f(1)= ( )A. 14 B. 15 C. 16 D. 17【答案】B【解析】【分析】直接利用分段函数化简求解函数值即可得结果.【详解】因为函数f(x)=log2(3x)+1,x12x,x1,则f(1)+f(log212)=log2(3+1)+1+2log212=2+1+12=15,故选B.【点睛】该题考查的是有关分段函数求函数值的问题,在解题的过程中,注意判断自变量所属的区间,从而正确代入相关的函数解析式.7.函数y=2sin(2x+)(0)的图象向右平移6个单位以后,到y=2cos2x的图像,则= ( )A. 6 B. 56 C. 23 D. 3【答案】B【解析】【分析】根据函数图象的平移变换法则,可求出平移后函数的解析式,进而根据诱导公式,得到所满足的条件,再结合的范围,确定出最后的结果.【详解】把函数f(x)=2sin(2x+)(0)的图象向右平移6个单位后得到:g(x)=2sin2(x6)+=2sin(2x+3)=2cos2x,所以有3=2k+2,即=2k+56,kZ,因为02,所以直线x+y+2=0与圆(x2)2+y2=2是相离的,所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin=222=2,故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.9.已知函数f(x)=x2+2x+3,若在区间4,4上任取一个实数x0,则使f(x0)0成立的概率为( )A. 425 B. 12 C. 23 D. 1【答案】B【解析】试题分析:由f(x0)0得1x03所以所求概率为,故选B.考点:几何概型.10.若曲线y=x2+ax+b在点(0, b)处的切线方程是xy+1=0, 则( )A. a=1,b=1 B. a=1,b=1 C. a=1,b=1 D. a=1,b=1【答案】A【解析】解析:y=2x+a|x=0=a,a=1,(0,b)在切线xy+1=0,b=111.已知点4,0到双曲线C:x2a2y2b2=1(a0,b0)渐近线的距离为2,则该双曲线的离心率为 ( )A. 87 B. 2147 C. 22 D. 7【答案】B【解析】【分析】首先根据双曲线的方程写出双曲线的一条渐近线方程,化成一般式,根据题意,利用点到直线的距离公式求得4ba2+b2=2,化简得出7c2=8a2,从而求得双曲线的离心率.【详解】双曲线C:x2a2y2b2=1(a0,b0)的一条渐近线是y=bax,即bxay=0,由点(4,0)到双曲线bxay=0的距离为2,可得4ba2+b2=2,即22b=c,所以8(c2a2)=c2,所以7c2=8a2,所以e=ca=87=2147,故选B.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有双曲线的渐近线,点到直线的距离公式,双曲线中a,b,c的关系,属于简单题目.12.设A,B,C,D是球面上四点,已知AB=AC=23,BC=26,球的表面积为32,则四面体ABCD的体积的最大值为 ( )A. 62 B. 122 C. 182 D. 362【答案】A【解析】【分析】首先根据题中所给的条件,确定出ABC是以BC为斜边的等腰直角三角形,从而求得ABC的外接圆的半径为r=6,再根据球的表面积求得球的半径R=22,从而求得球心到截面的距离,再利用三棱锥的体积公式分析得出四面体的体积取最大值时顶点的位置,从而求得结果.【详解】根据条件AB=AC=23,BC=26,可得AB2+AC2=BC2,所以ABC是以BC为斜边的等腰直角三角形,所以ABC的外接圆的半径为r=6,又因为球的表面积为32,所以有4R2=32,解得R=22,从而能够求得球心到截面ABC的距离为d=86=2,此时四面体ABCD的底面ABC的面积为S=122323=6,可以确定点D到底面ABC的距离的最大值为h=22+2=32,所以四面体的体积的最大值为V=13632=62,故选A.【点睛】该题考查的是有关球内接三棱锥的体积的最值的问题,涉及到的知识点有直角三角形的外接圆的半径,球的表面积公式,球中的特殊直角三角形,椎体的体积公式,属于中档题目.二、填空题:本题共4小题,每小题5分.13.已知向量a=(1,2),b=(2,),c=(2,1)若c/(2a+b),则=_【答案】2【解析】【分析】首先由a,b的坐标,利用向量的坐标运算可得2a+b=(4,4+),接下来由向量平行的坐标运算可得41=2(4+),求解即可得结果.【详解】因为a=(1,2),b=(2,),所以2a+b=(4,4+),因为c(2a+b),c=(2,1),所以41=2(4+),解得=2,即答案为2.【点睛】该题是一道关于向量平行的题目,关键是掌握向量平行的条件.14.【xx全国卷文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是_【答案】分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为:分层抽样。点睛:本题主要考查简单随机抽样,属于基础题。15.阅读如图所示的程序框图,若a=log1213,b=log2e,c=ln2,则输出的结果是_.【答案】【解析】【分析】首先分析程序框图的作用是输出三个数中的最大值,从而比较三个数的大小,求得结果.【详解】根据题中所给的程序框图,可以判断出其作用是输出三者中的最大出那个数,因为a=log1213=log23log2e=b1,而c=ln21,所以其最大值是,故答案是:.【点睛】该题考查的是有关程序框图的输出结果的求解问题,属于简单题目.16.已知函数f(x)=ln(x+1+x2)+3,f(t)=7,则f(t)=_【答案】1【解析】【分析】首先根据题中所给的函数解析式,求得f(x)+f(x)=6,从而求得f(t)=6f(t)=67=1.【详解】因为f(x)+f(x)=ln(x+1+x2)+3+ln(x+1+x2)+3=6+ln(x2+1x2)=6,所以f(t)+f(t)=6,从而得到f(t)=6f(t)=67=1,故答案是:1.【点睛】该题考查的是有关利用函数解析式求函数值的问题,涉及到的知识点有对数的运算法则,属于简单题目.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.ABC的内角A,B,C的对边分别为a,b,c,已知sin(B+C)=3sin2A2.(1)求cosA;(2)若ABC的面积为6,b+c=8,求.【答案】(1)513(2)27【解析】【分析】(1)利用三角形的内角和定理可知B+C=A,再利用诱导公式化简,再利用倍角公式化简,从而求得tanA2=23,之后借助于倍角公式和同角三角函数关系式,求得cosA的值;(2)由(1)可知sinB=1213,利用面积公式求得bc=13,再利用余弦定理即可求得a=27.【详解】(1)由A+B+C=及题设得sinA=3sin2A2,故tanA2=23所以cosA=cos2A2-sin2A2=1-tan2A21+tan2A2=513(2)由cosA=513得sinA=1213,又SABC=6,可得bc=13由余弦定理及b+c=8得a2=(b+c)2-2bc(cosA+1)=28故a=27【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有诱导公式,倍角公式,同角三角函数关系式,三角形的面积公式,余弦定理,熟练掌握基础知识是正确解题的关键.18.经销商销售某种产品,在一个销售季度内,每售出1t该产品获利润300元;未售出的产品,每1t亏损100元根据以往的销售记录,得到一个销售季度内市场需求量的频率分布直方图,如图所示经销商为下一个销售季度购进了120t该产品用x(单位:,100x150)表示下一个销售季度内的市场需求量,y(单位:元)表示下一个销售季度内经销该产品的利润(1)将y表示为x的函数;(2)根据直方图估计利润y不少于32000元的概率【答案】(1)y=400x12000,100x12036000,120x150(2)0.9【解析】【分析】(1)由题意先分段写出,当x100,120时,当x(120,150时,和利润值,最后利用分段函数的形式进行综合即可;(2)利用(1)求出利润不少于3xx元时110x150,再利用频率分布直方图求得x110,150的频率为0.9,利用样本估计总体的方法得出利润y不少于3xx的概率估计值.【详解】(1)由题意得,当x100,120时,y=400x-12000;当x120,150时y=36000;故函数为y=400x-12000,100x12036000,120x150(2)由(1)知利润不少于32000元相当于110x150,由直方图可知需求量在110,150之间的频率为0.9,所以下一个销售季度经销利润不少于32000元的概率估计值为0.9【点睛】该题考查的是有关频率分布直方图的问题,涉及到的知识点有应用分段函数解决实际问题,利用频率分布直方图估计对应事件的概率,属于简单题目.19.已知数列an,Sn是该数列的前n项和,Sn=n2+2n.(1)求数列an的通项公式;(2)设bn=1anan+1,已为Tn=b1+b2+bn,证明Tn16.【答案】(1)an=2n+1(2)详见解析【解析】【分析】(1)根据数列的项与和的关系,求得an的通项公式;(2)利用(1)求得bn=1(2n+1)(2n+3),利用裂项相消法求和.【详解】(1)易知a1=3当n2时,由an=Sn-Sn-1 =2n+1,n=1时也成立,得an=2n+1(2)由bn=1(2n+1)(2n+3)=12(12n+1-12n+3)可得Tn=b1+b2+bn=12(13-15+15-17+12n+1-12n+3)=12(13-12n+3)因为nN+,所以Tn16【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用数列的项与和的关系求通项,利用裂项相消法求和,属于简单题目.20.四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD、BC的平面分别交四面体的棱BD、DC、CA于点F、G、H(1)求证:四边形EFGH是矩形;(2)求点A到面EFGH的距离【答案】(1)详见解析(2)22【解析】【分析】(1)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得到四边形为平行四边形,再由线面垂直的判定和性质得到ADBC,结合异面直线所成角的概念得到EFEH,从而证得结论;(2)利用线面平行时,直线上的点到平面的距离是相等的,将点A到面EFGH的距离转化为点D到面EFGH的距离,求解即可.【详解】(1)证明:由AD平面ABDAD/平面EFGH平面ABD平面EFGH于EFAD/EF,同理可得AD/HG所以EF/HG由BC平面BCDBC/平面EFGH平面BCD平面EFGH于FGBC/FG,同理可得BC/EH所以FG/EH所以四边形EFGH是平行四边形由三视图可知AD平面BCD,所以EF平面BCD,又FG平面BCD所以EFFG,所以四边形EFGH是矩形(2)易知A点到面EFGH的距离即D点到面EFGH的距离,由AD/平面EFGHAD平面BCD平面EFGH平面BCD且交于FG所以D点到面EFGH的距离即D点到线FG的距离由(1)和E是AB的中点可知F、G分别是DB、DC的中点,又由三视图可知DBC是等腰直角三角形,易得D点到线FG的距离为22,即A点到面EFGH的距离【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的性质,线面垂直的判定和性质,点到平面的距离,属于中档题目.21.已知抛物线C:y2=2px过点A(1,1).直线过点(0,12)且与抛物线C交于两点M,N,过点M作x轴的垂线,该垂线分别交直线OA,ON于点P,Q,其中O为坐标原点 (1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)证明:2QP=QM.【答案】(1)方程为y2=x,其焦点坐标为(14,0),准线方程为x=14;(2)详见解析.【解析】【分析】(1)根据抛物线过点A(1,1),代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2)设过点(0,12)的直线方程为y=kx+12,M(x1,y1),N(x2,y2),根据韦达定理得x1+x2=1-kk2,x1x2=14k2,假设直线OA的方程为y=x,所以P(x1,x1),直线ON的方程为y=y2x2x,所以Q(x1,y2x2x1),最后利用中点坐标的关系,证得结果.【详解】(1)易得p=12,所以抛物线C的方程为y2=x其焦点坐标为(14,0),准线方程为x=-14(2)由题意,假设直线的方程为y=kx+12(k0),M(x1,y1),N(x2,y2)所以y=kx+12y2=x4k2x2+(4k-4)x+1=0,可得x1+x2=1-kk2,x1x2=14k2假设直线OA的方程为y=x,所以P(x1,x1),直线ON的方程为y=y2x2x,所以Q(x1,y2x2x1),y1+y2x1x2=y1x2+y2x1x2=(kx1+12)x2+(kx2+12)x1x2=2kx1x2+12(x1+x2)x2=12k2x2=2x1故P是线段QM的中点,所以2QP=QM.【点睛】该题考查的是有关抛物线的问题,涉及到的知识点有抛物线的标准方程的求法,抛物线的几何性质,直线与抛物线的关系,属于较难题目.22.已知函数f(x)=x+1ex(e为自然对数的底数.(1)求函数f(x)的极值;(2)设函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄河文化的丰富内涵与时代价值
- 2025新译林版英语七年级下单词默写单
- 北海2024年01版小学6年级上册英语第6单元测验卷
- 2024年洗煤项目资金申请报告代可行性研究报告
- 2024年超高分子量聚乙烯项目投资申请报告代可行性研究报告
- 《紧密纺精梳棉纱制备技术规范》
- Python程序设计实践- 习题及答案 ch02 问题求解与计算思维
- 组织部工作总结15篇
- 读书交流会专题讨论发言稿
- 广西景点导游词1000字(14篇)
- 服装专卖店设计(课堂PPT)
- 草莓栽培技术(课堂PPT)课件
- 幼儿园后勤副园长述职报告范文(精选5篇)
- 昆山市企业退休人员基本养老金审批表
- 传热学课后题答案戴锅生主编第二版
- 讲义参考成语新22图片
- 义务教育语文课程常用字表 (3500字)
- 集成电路制造中的质量控制和成品率培训课件(共84页).ppt
- 东莞重大产业项目评价实施办法
- 临床思维黄疸待查ppt课件
- 路基土石方数量计算表(模板)
评论
0/150
提交评论