(浙江专版)2017-2018学年高中数学 第三章 函数的应用 3.2 函数模型及其应用学案 新人教A版必修1.doc_第1页
(浙江专版)2017-2018学年高中数学 第三章 函数的应用 3.2 函数模型及其应用学案 新人教A版必修1.doc_第2页
(浙江专版)2017-2018学年高中数学 第三章 函数的应用 3.2 函数模型及其应用学案 新人教A版必修1.doc_第3页
(浙江专版)2017-2018学年高中数学 第三章 函数的应用 3.2 函数模型及其应用学案 新人教A版必修1.doc_第4页
(浙江专版)2017-2018学年高中数学 第三章 函数的应用 3.2 函数模型及其应用学案 新人教A版必修1.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.232.1几类不同增长的函数模型预习课本P95101,思考并完成以下问题(1)函数yax(a1),ylogax(a1)和yxn(n0)在(0,)上的单调性是怎样的?图象的变化规律是什么? (2)函数yax(a1),ylogax(a1)和yxn(n0)的增长速度有什么不同? 指数函数、对数函数和幂函数的增长差异一般地,在区间(0,)上,尽管函数yax(a1),ylogax(a1)和yxn(n0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上随着x的增大,yax(a1)的增长速度越来越快,会超过并远远大于yxn(n0)的增长速度,而ylogax(a1)的增长速度则会越来越慢因此,总会存在一个x0,使得当xx0时,就有logaxxn1,n0)1判断(正确的打“”,错误的打“”)(1)函数yx2比y2x增长的速度更快些()(2)当a1,n0时,在区间(0,)上,对任意的x,总有logaxxnax成立()答案:(1)(2)2下列函数中随x的增大而增大且速度最快的是()AyexByln xCyx2 Dyex答案:A3某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为_答案:yx50(0x200)几类函数模型增长差异的比较例1四个变量y1,y2,y3,y4随变量x变化的数据如表:x151015202530y1226101226401626901y22321 02432 7681.051063.361071.07109y32102030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是_解析从表格观察函数值y1,y2,y3,y4的增加值,哪个变量的增加值最大,则该变量关于x呈指数函数变化以爆炸式增长的变量呈指数函数变化从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数函数变化故填y2.答案y2常见的函数模型及增长特点(1)线性函数模型线性函数模型ykxb(k0)的增长特点是直线上升,其增长速度不变(2)指数函数模型指数函数模型yax(a1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”(3)对数函数模型对数函数模型ylogax(a1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓(4)幂函数模型幂函数yxn(n0)的增长速度介于指数增长和对数增长之间 活学活用1有一组数据如下表:t1.993.04.05.16.12v1.54.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律 ,其中最接近的一个是()Avlog2tBvlogtCv Dv2t2函数模型的选择问题解析:选C从表格中看到此函数为单调增函数,排除B,增长速度越来越快,排除A和D,选C.例2某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y0.2x,ylog5x,y1.02x,其中哪个模型符合该校的要求?解作出函数y3,y0.2x,ylog5x,y1.02x的图象(如图所示)观察图象可知,在区间5,60上,y0.2x,y1.02x的图象都有一部分在直线y3的上方,只有ylog5x的图象始终在y3和y0.2x的下方,这说明只有按模型ylog5x进行奖励才符合学校的要求不同函数模型的选取标准(1)线性函数增长模型适合于描述增长速度不变的变化规律;(2)指数函数增长模型适合于描述增长速度急剧的变化规律;(3)对数函数增长模型适合于描述增长速度平缓的变化规律;(4)幂函数增长模型适合于描述增长速度一般的变化规律因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题 活学应用2某地区植被被破坏,土地沙漠化越来越严重,测得最近三年沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y万公顷关于年数x的函数关系式大致可以是()Ay0.2x By(x22x)Cy Dy0.2log16x解析:选C对于A,x1,2时,符合题意,x3时,y0.6,与0.76相差0.16;对于B,x1时,y0.3;x2时,y0.8;x3时,y1.5,相差较大,不符合题意;对于C,x1,2时,符合题意,x3时,y0.8,与0.76相差0.04,与A比较,符合题意;对于D,x1时,y0.2;x2时,y0.45;x3时,y0.60.7,相差较大,不符合题意.指数函数、对数函数与幂函数模型的比较 例3函数f(x)2x和g(x)x3的图象如图所示设两函数的图象交于点A(x1,y1),B(x2,y2),且x1x2.(1)请指出图中曲线C1,C2分别对应的函数(2)结合函数图象,判断f(6),g(6),f(2 016),g(2 016)的大小解(1)C1对应的函数为g(x)x3,C2对应的函数为f(x)2x.(2)因为f(1)g(1),f(2)g(2),f(9)g(9),f(10)g(10),所以1x12,9x210,所以x16x2,2 016x2.从图象上可以看出,当x1xx2时,f(x)g(x),所以f(6)g(6)当xx2时,f(x)g(x),所以f(2 016)g(2 016)又因为g(2 016)g(6),所以f(2 016)g(2 016)g(6)f(6)一题多变1变条件若将本例中“函数f(x)2x”改为“f(x)3x”,又如何求解(1)呢?解:由图象的变化趋势以及指数函数和幂函数的增长速度可知:C1对应的函数为g(x)x3,C2对应的函数为f(x)3x.2变设问本例条件不变,(2)中结论若改为:试结合图象,判断f(8),g(8),f(2 015),g(2 015)的大小解:因为f(1)g(1),f(2)g(2),f(9)g(9),f(10)g(10),所以1x12,9x210,所以x18x2,2 015x2.从图象上可以看出,当x1xx2时,f(x)g(x),所以f(8)g(8)当xx2时,f(x)g(x),所以f(2 015)g(2 015)又因为g(2 015)g(8),所以f(2 015)g(2 015)g(8)f(8)由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数层级一学业水平达标1在一次数学试验中,采集到如下一组数据:x2.01.001.002.003.00y0.240.5112.023.988.02则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()AyabxByabxCyax2b Dya解析:选B在坐标系中描出各点,知模拟函数为yabx.2下列函数中,随着x的增大,增长速度最快的是()Ay50By1 000xCy0.42x1 Dyex解析:选D指数函数yax,在a1时呈爆炸式增长,而且a越大,增长速度越快,选D.3某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用()A一次函数B二次函数C指数型函数 D对数型函数解析:选D由于一次函数、二次函数、指数函数的增长不会后来增长越来越慢,只有对数函数的增长符合4有一组实验数据如下表所示:x12345y1.55.913.424.137下列所给函数模型较适合的是()Aylogax(a1) Byaxb(a1)Cyax2b(a0) Dylogaxb(a1)解析:选C通过所给数据可知y随x增大,其增长速度越来越快,而A、D中的函数增长速度越来越慢,而B中的函数增长速度保持不变,故选C.5y12x,y2x2,y3log2x,当2x4时,有()Ay1y2y3 By2y1y3Cy1y3y2 Dy2y3y1解析:选B在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2x2,y12x,y3log2x,故y2y1y3.6小明2015年用7 200元买一台笔记本电子技术的飞速发展,笔记本成本不断降低,每过一年笔记本的价格降低三分之一三年后小明这台笔记本还值_元解析:三年后的价格为7 200元答案:7函数yx2与函数yxln x在区间(1,)上增长较快的一个是_解析:当x变大时,x比ln x增长要快,x2要比xln x增长的要快答案:yx28已知某工厂生产某种产品的月产量y与月份x满足关系ya(0.5)xb,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件则此厂3月份该产品的产量为_万件解析:ya(0.5)xb,且当x1时,y1,当x2时,y1.5,则有解得y2(0.5)x2.当x3时,y20.12521.75(万件)答案:1.759画出函数f(x)与函数g(x)x22的图象,并比较两者在0,)上的大小关系解:函数f(x)与g(x)的图象如图所示根据图象易得:当0x4时,f(x)g(x);当x4时,f(x)g(x);当x4时,f(x)g(x)10燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v5log2,单位是m/s,其中Q表示燕子的耗氧量(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题知,当燕子静止时,它的速度v0,代入题中所给公式可得:05log2,解得Q10.即燕子静止时的耗氧量是10个单位(2)将耗氧量Q80代入题给公式得:v5log25log2815(m/s)即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.层级二应试能力达标1某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数yf(x)的图象大致为()解析:选D设该林区的森林原有蓄积量为a,由题意可得axa(10.104)y,故ylog1.104x(x1),函数为对数函数,所以函数yf(x)的图象大致为D中图象,故选D.2三个变量y1,y2,y3,随着变量x的变化情况如下表:x1357911y151356251 7153 6456 655y25292452 18919 685177 149y356.106.616.9857.27.4则关于x分别呈对数函数、指数函数、幂函数变化的变量依次为()Ay1,y2,y3By2,y1,y3Cy3,y2,y1 Dy1,y3,y2解析:选C通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数函数的增长速度成倍增长,y2随x的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y1随x的变化符合此规律,故选C.3四人赛跑,假设他们跑过的路程fi(x)(其中i1,2,3,4)和时间x(x1)的函数关系分别是f1(x)x2,f2(x)4x,f3(x)log2x,f4(x)2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()Af1(x)x2 Bf2(x)4xCf3(x)log2x Df4(x)2x解析:选D显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)2x,故选D.4以下四种说法中,正确的是()A幂函数增长的速度比一次函数增长的速度快 B对任意的x0,xnlogaxC对任意的x0,axlogaxD不一定存在x0,当xx0时,总有axxnlogax解析:选D对于A,幂函数与一次函数的增长速度受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长幅度不能比较;对于B、C,当0a1时,显然不成立当a1,n0时,一定存在x0,使得当xx0时,总有axxnlogax,但若去掉限制条件“a1,n0”,则结论不成立5以下是三个变量y1,y2,y3随变量x变化的函数值表:x12345678y1248163264128256y21491625364964y3011.58522.3222.5852.8073其中,关于x呈指数函数变化的函数是_解析:从表格可以看出,三个变量y1,y2,y3都是越来越大,但是增长速度不同,其中变量y1的增长速度最快,画出它们的图象(图略),可知变量y1呈指数函数变化,故填y1.答案:y16生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应_;B对应_;C对应_;D对应_解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快慢快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应答案:(4)(1)(3)(2)7函数f(x)1.1x,g(x)ln x1,h(x)x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点)解:由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)1.1x,曲线C2对应的函数是h(x)x,曲线C3对应的函数是g(x)ln x1.由题图知,当xh(x)g(x);当1xg(x)h(x);当exf(x)h(x);当axh(x)f(x);当bxg(x)f(x);当cxf(x)g(x);当xd时,f(x)h(x)g(x)8某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型yax2bxc,乙选择了模型ypqxr,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?解:依题意,得即解得所以甲:y1x2x52,又,得pq2pq12,得pq3pq24,得q2.将q2代入式,得p1.将q2,p1代入式,得r50,所以乙:y22x50.计算当x4时,y164,y266;当x5时,y172,y282;当x6时,y182,y2114.可见,乙选择的模型较好32.2函数模型的应用实例预习课本P101106,思考并完成以下问题(1)一、二次函数的表达形式分别是什么? (2)指数函数模型、对数函数模型的表达形式是什么?其中待定系数有哪些限制条件? (3)解决实际问题的基本过程是什么? 几类常见函数模型名称解析式条件一次函数模型ykxbk0反比例函数模型ybk0二次函数模型一般式:yax2bxc顶点式:ya2a0指数函数模型ybaxca0且a1,b0对数函数模型ymlogaxna0且a1,m0幂函数模型yaxnba0,n11判断(正确的打“”,错误的打“”)(1)在一次函数模型中,系数k的取值会影响函数的性质()(2)在幂函数模型的解析式中,a的正负会影响函数的单调性()答案:(1)(2)2某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为()Ay0.2x(0x4 000) By0.5x(0x4 000)Cy0.1x1 200(0x4 000) Dy0.1x1 200(0x4 000)答案:C3某种细胞分裂时,由1个分裂成2个,2个分裂成4个,现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是()Ay2xBy2x1Cy2x Dy2x1答案:D4某物体一天内的温度T是时间t的函数T(t)t33t60,时间单位是h,温度单位为,t0时表示中午12:00,则上午8:00时的温度为_.答案:8二次函数模型 例1某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单价x元与日销售量y件之间有如下关系:销售单价x(元)30404550日销售量y(件)6030150(1)在所给坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定x与y的一个函数关系式yf(x);(2)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润解(1)如图:设f(x)kxb,则解得所以f(x)3x150,30x50,检验成立(2)P(x30)(3x150)3x2240x4 500,30x50.因为对称轴x4030,50,所以当销售单价为40元时,所获日销售利润最大二次函数模型应用题的4个步骤(1)审题:理解题意,设定变量x,y.(2)建模:建立二次函数关系,并注明定义域(3)解模:运用二次函数相关知识求解(4)结论:回归到应用问题中去,给出答案 活学活用1据市场分析,烟台某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点(1)写出月总成本y(万元)关于月产量x(吨)的函数关系(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?解:(1)由题可设ya(x15)217.5,将x10,y20代入上式,得2025a17.5.解得a.所以y0.1x23x40(10x25)(2)设最大利润为Q(x),则Q(x)1.6xy1.6x0.1(x23)212.9(10x25)因为x2310,25,所以月产量为23吨时,可获最大利润12.9万元.分段函数模型 例2提高过江大桥的车辆通行能力可改善整个城市的交通状况在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时研究表明:当20x200时,车流速度v是车流密度x的一次函数(1)当0x200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)xv(x)可以达到最大,并求出最大值(精确到1辆/小时)解(1)由题意,当0x20时,v(x)60;当20x200时,设v(x)axb,再由已知得解得故函数v(x)的表达式为v(x)(2)依题意并结合(1)可得f(x)当0x20时,f(x)为增函数,故当x20时,其最大值为60201 200;当20x200时,f(x)x(200x)(x100)2,当且仅当x100时,等号成立所以,当x100时,f(x)在区间(20,200上取得最大值.综上,当x100时,f(x)在区间0,200上取得最大值3 333.即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时构建分段函数模型的关键点建立分段函数模型的关键是确定分段的各边界点,即明确自变量的取值区间,对每一区间进行分类讨论,从而写出函数的解析式 活学活用2某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(g)与时间t(h)之间近似满足如图所示的曲线(1)写出服药后y与t之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4 g时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问一天中怎样安排服药时间(共4次)效果最佳?解:(1)依题意得y(2)设第二次服药时在第一次服药后t1小时,则t14,解得t14,因而第二次服药应在11:00.设第三次服药在第一次服药后t2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有t2(t24)4,解得t29小时,故第三次服药应在16:00.指数、对数型函数模型设第四次服药在第一次服药后t3小时(t310),则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和(t34)(t39)4,解得t313.5小时,故第四次服药应在20:30.例3一种放射性元素,最初的质量为500 g,按每年10%衰减(1)求t年后,这种放射性元素的质量w的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(结果精确到0.1)解(1)最初的质量为500 g.经过1年,w500(110%)5000.9;经过2年,w5000.92;由此推知,t年后,w5000.9t.(2)由题意得5000.9t250,即09t0.5,两边取以10为底的对数,得lg 0.9tlg 0.5,即tlg 0.9lg 0.5,t6.6.即这种放射性元素的半衰期为6.6年指数函数模型的应用在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示通常可以表示为yN(1p)x(其中N为基础数,p为增长率,x为时间)的形式 活学活用3某种产品的年产量为a,在今后m年内,计划使产量平均每年比上年增加p%.(1)写出产量y随年数x变化的函数解析式;(2)若使年产量两年内实现翻两番的目标,求p.解:(1)设年产量为y,年数为x,则ya(1p%)x,定义域为x|0xm,且xN*(2)ya(1p%)24a,解得p100.层级一学业水平达标1一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:每间每天定价20元18元16元14元住房率65%75%85%95%要使收入每天达到最高,则每间应定价为()A20元B18元C16元 D14元解析:选C每天的收入在四种情况下分别为2065%1001 300(元),1875%1001 350(元),1685%1001 360(元),1495%1001 330(元)2若等腰三角形的周长为20,底边长y是关于腰长x的函数,则它的解析式为()Ay202x(x10) By202x(x10)Cy202x(5x10) Dy202x(5x10)解析:选D由题意,得2xy20,y202x.y0,202x0,x10.又三角形两边之和大于第三边,解得x5,5x10,故选D.3某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y其中,x代表拟录用人数,y代表面试人数,若面试人数为60,则该公司拟录用人数为()A15 B40 C25 D130解析:选C若4x60,则x1510,不合题意;若2x1060,则x25,满足题意;若1.5x60,则x40100,不合题意故拟录用25人4某种动物的数量y(单位:只)与时间x(单位:年)的函数关系式为yalog2(x1),若这种动物第1年有100只,则第7年它们的数量为()A300只 B400只C500只 D600只解析:选A由题意,知100alog2(11),得a100,则当x7时,y100log2(71)1003300.5生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本(单位:万元)为C(x)x22x20.已知1万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为()A36万件 B22万件C18万件 D9万件解析:选C利润L(x)20xC(x)(x18)2142,当x18时,L(x)取最大值6某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产已知该生产线连续生产n年的累计产量为f(n)n(n1)(2n1)吨,但如果年产量超过150吨,将会给环境造成危害为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是_年解析:由题意可知,第一年产量为a11233;以后各年产量为anf(n)f(n1)n(n1)(2n1)n(n1)(2n1)3n2(nN*),令3n2150,得1n51n7,故生产期限最长为7年答案:77某商人购货,进价已按原价a扣去25%,他希望对货物定一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式是_解析:设新价为b,则售价为b(120%)原价为a,进价为a(125%)依题意,有b(120%)a(125%)b(120%)25%,化简得ba,yb20%xa20%x,即yx(xN*)答案:yx(xN*)8某商店每月按出厂价每瓶3元购进一种饮料,根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若零售价每降低(升高)0.5元,则可多(少)销售40瓶,在每月的进货当月销售完的前提下,为获得最大利润,销售价应定为_元/瓶解析:设销售价每瓶定为x元,利润为y元,则y(x3)80(x3)(9x)80(x6)2720(x3),所以x6时,y取得最大值答案:69为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的研究表明:假设课桌的高度为y cm,椅子的高度为x cm,则y应是x的一次函数,下表列出了两套符合条件的课桌椅的高度:第一套第二套椅子高度x(cm)40.037.0桌子高度y(cm)75.070.2(1)请你确定y与x的函数解析式(不必写出x的取值范围);(2)现有一把高42.0 cm的椅子和一张高78.2 cm的课桌,它们是否配套?为什么?解:(1)根据题意,课桌高度y是椅子高度x的一次函数,故可设函数解析式为ykxb(k0)将符合条件的两套课桌椅的高度代入上述函数解析式,得所以所以y与x的函数解析式是y1.6x11.(2)把x42代入(1)中所求的函数解析式中,有y1.6421178.2.所以给出的这套桌椅是配套的10某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆,租出的车每月需要维护费160元,未租出的车每月需要维护费40元(1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少?解:(1)租金增加了900元,9006015,所以未租出的车有15辆,一共租出了85辆(2)设租金提高后有x辆未租出,则已租出(100x)辆租赁公司的月收益为y元,y(3 00060x)(100x)160(100x)40x,其中x0,100,xN,整理,得y60x23 120x284 00060(x26)2324 560,当x26时,y324 560,即最大月收益为324 560元此时,月租金为3 00060264 560(元)层级二应试能力达标1某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元(不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费()A1.00元B0.90元C1.20元 D0.80元解析:选By0.20.1(x3),(x是大于x的最小整数,x0),令x,故x10,则y0.9.故选B.2某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A3 100元 B3 000元C2 900元 D2 800元解析:选B设函数解析式为ykxb(k0),函数图象过点(1,8 000),(2,13 000),则解得y5 000x3 000,当x0时,y3 000,营销人员没有销售量时的收入是3 000元3用长度为24的材料围一个中间有两道隔墙的矩形场地,要使矩形的面积最大,则隔墙的长度为()A3 B4 C6 D12解析:选A设隔墙长度为x,如图所示,x则与隔墙垂直的边长为122x,矩形面积Sx(122x)2x212x,0x6,当x3时,Smax18.4衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:Vaekt.已知新丸经过50天后,体积变为a.若一个新丸体积变为a ,则需经过的天数为()A125 B100C75 D50解析:选C由已知,得aae50k,ek.设经过t1天后,一个新丸体积变为a,则aae-,(ek) t1,t175.5如图所示,折线是某电信局规定打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为_元;(2)通话5分钟,需付的电话费为_元;(3)如果t3,则电话费y(元)与通话时间t(分钟)之间的函数关系式为_解析:(1)由图象可知,当t3时,电话费都是3.6元(2)由图象可知,当t5时,y6,即需付电话费6元(3)当t3时,y关于x的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为yktb,则解得故y关于t的函数关系式为y1.2t(t3)答案:(1)3.6(2)6(3)y1.2t(t3)6在不考虑空气阻力的情况下,火箭的最大速度v米/秒和燃料的质量M千克、火箭(除燃料外)的质量m千克的函数关系式是v2 000ln.当燃料质量是火箭质量的_倍时,火箭的最大速度可达12千米/秒解析:当v12 000时,2 000ln12 000,ln6,e61.答案:e617一片森林原来面积为a,计划每年砍伐一些树,且使森林面积每年比上一年减少p%,10年后森林面积变为.已知到今年为止,森林面积为a.(1)求p%的值;(2)到今年为止,该森林已砍伐了多少年?解:(1)由题意得a(1p%)10,即(1p%)10,解得p%1.(2)设经过m年森林面积变为a,则a(1p%)ma,即,解得m5,故到今年为止,已砍伐了5年8某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:时间第4天第32天第60天第90天价格(千元)2330227(1)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x天,xN*);(2)销售量g(x)与时间x的函数关系式为g(x)x(1x100,xN*),则该产品投放市场第几天的销售额最高?最高为多少千元?解:(1)当0x40时,设f(x)kxb,则有f(x)x22(0x40,xN*)同理可得f(x)x52(40x100,xN*),故f(x)其中xN*.(2)设日销售额为S(x)千元,则当0x40,xN*时,S(x)f(x)g(x)(x88)(x109)其图象的对称轴为x10.5,当x10,11时,S(x)取最大值,S(x)max808.5.当40x100,xN*时,S(x)(x104)(x109)其图象的对称轴为x106.5,当40x100,xN*时,S(x)S(40)736808.5.综上可得,该产品投放市场第10天和第11天的销售额最高,最高销售额为808.5千元(时间120分钟满分150分)一、选择题(本大题共8小题,每小题40分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1函数f(x)lg|x|的零点是()A(1,0)B(1,0)和(1,0)C1 D1和1解析:选D由f(x)0,得lg|x|0,所以|x|1,x1.故选D.2函数f(x)2x3x的零点所在的一个区间是()A(2,1) B(1,0)C(0,1) D(1,2)解析:选B因为f(1)30,f(0)10,所以f(x)在区间(1,0)上存在零点3以半径为R的半圆上任意一点P为顶点,直径AB为底边的PAB的面积S与高PDx的函数关系式是()ASRx BS2Rx(x0)CSRx(0xR) DSR2解析:选CSPABABPDRx,又0PDR,SRx(0xR)4下列给出的四个函数f(x)的图象中能使函数yf(x)1没有零点的是()解析:选C把yf(x)的图象向下平移1个单位长度后,只有选项C中图象与x轴无交点5某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价)陈先生坐了趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是()A5,6) B(5,6C6,7) D(6,7解析:选B若按

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论