已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019高考数学(理)倒计时模拟卷(2)1、若全集,则( )A.B.C.D.2、如图,在中, ,若,则 ( )A. B. C. D. 3、若为虚数单位,则( )A. B. C.1 D.4、设两个变量x和y之间具有线性相关关系,它们的相关系数为r,y关于x的回归直线方程为,则( )A. k与r的符号相同B. b与r的符号相同C. k与r的符号相反D. b与r的符号相反5、函数的大致图像为( )A.B.C.D.6、若函数的图象上相邻的最高点和最低点间的距离为,则的图象与x轴所有交点中,距离原点最近的点的坐标为( )A.B.C.D.7、已知,则 ()A. B. C. D. 8、已知数列的前n项和为,数列满足,若对任意恒成立,则实数m的最小值为( )A.B.C.或D.9、已知是空间中两条不同的直线, 为空间中两个互相垂直的平面,则下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则10、已知点P为双曲线右支上一点,分别为双曲线的左右焦点,点为的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围为( )A B. C D 11、若关于x的方程在区间上有且只有一解,则正数的最大值是()A.8B.7C.6D.512、已知,若,则的最小值为()A. B. C. D. 13、若展开式的二项式系数之和为,则展开式的常数项为_14、在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心, 为半径的圆与圆有公共点,则的最大值是 .15、若整数满足不等式组,则的最小值为_16、已知直线与圆相切且与抛物线交于不同的两点,则实数的取值范围是_17、在中,内角的对边分别为,且1.若,的面积为,求;2.若,求角.18、在如图所示的几何体中,四边形是正方形, 平面,分别是线段,的中点, .1.求证: 平面;2.求平面与平面所成锐二面角的余弦值.19、中华人民共和国民法总则(以下简称民法总则)自年月日起施行。作为民法典的开篇之作,民法总则与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取人,他们的年龄都在区间上,年龄的频率分布及了解民法总则的人数如下表: 年龄 频数 了解民法总则 1. 填写下面列联表,并判断是否有的把握认为以岁为分界点对了解民法总则政策有差异; 年龄低于岁的人数 年龄不低于岁的人数 合计 了解 不了解 合计 2.若对年龄在的被调研人中各随机选取人进行深入调研,记选中的人中不了解民法总则的人数为,求随机变量的分布列和数学期望. 参考公式数据: 20、已知椭圆 : ()的两个焦点分别为,离心率为,且过点.1.求椭圆 的标准方程;2. 、是椭圆上四个不同的点,两条都不与轴垂直的直线和分别过点,且这两条直线互相垂直,求证: 为定值.21、已知函数1.当时,讨论的极值情况;2.若,求的值.22、在平面直角坐标系中,直线的参数方程为 (为参数),以坐标原点为极点, 轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知曲线的极坐标方程为,且直线经过曲线的左焦点.1.求直线的普通方程;2.设曲线的内接矩形的周长为,求的最大值.23、已知函数,.1.若恒成立,求的最小值;2.若,求不等式的解集.答案1.A解析:全集,.故选A.2.D解析:由题意, 3.B4.A5.A6.B解析:由函数的图象上相邻的最高点和最低点间的距离为,设的最小正周期为T,可得,所以,所以函数,令,得,解得,当时,即是的一个离原点最近的点,故选B.7.C8.A解析:,由题意得,.由,得,是数列的最大项.故选A.9.C解析:由题设, ,则A选项,若,则,错误;B选项,若,则错误;D选项,若,当时不能得到,错误.10.B11.B解析:可变为,方程在区间上有且只有一解,即在区间上有且只有一个交点,如图,由已知可得:设函数的最小正周期为,则,.12.D13.2014.解析:由于圆的方程为,圆心为由题意可知到的距离应不大于2,即.整理得,解得,故的最大值为.15.16.解析:因为直线与圆相切,所以,即将直线方程代入抛物线方程并整理,得.由直线与抛物线相交于不同的两点,得解得或17.1.2.或18.1.取中点,连接,分别是中点,为中点,四边形为正方形,四边形为平行四边形,平面,平面,平面.2.平面,且四边形是正方形,两两垂直,以为原点, 所在直线为轴,建立空间直角坐标系, 则设平面法向量为,则, 即,取,设平面法向量为,则,即,取,.平面与平面所成锐二面角的余弦值为19答案:1.列联表:年龄低于岁的人数年龄不低于岁的人数合计了解不了解合计没有的把握认为以岁为分界点对了解民法总则政策有差异.2.的所有可能取值为 则X的分布列为0123所以的数学期望是20.1.,椭圆的方程为,又点在椭圆上,解得,椭圆的方程为.2.由(1)得椭圆 的焦点坐标为,由已知,不妨设直线方程为.由直线与互相垂直,可得直线的方程为,由消去整理得,设,则,同理,为定值.21.1. .因为,由得, 或.当时, ,单调递增,故无极值.当时, .,的关系如下表:+0-0+单调递增极大值单调递减极小值单调递增故有极大值,极小值.当时, .,的关系如下表:+0-0+单调递增极大值单调递减极小值单调递增故有极大值,极小值.综上:当时, 有极大值,极小值;当时, 无极值;当时, 有极大值,极小值2.令,则.(i)当时, ,所以当时, ,单调递减,所以,此时,不满足题意.(ii)由于与有相同的单调性,因此,由1知:当时, 在上单调递增,又,所以当时, ;当时, .故当时,恒有,满足题意.当时, 在单调递减,所以当时, ,此时,不满足题意.当时, 在单调递减,所以当时, ,此时,不满足题意.综上所述: .解析:点睛:本题考查了导数的综合运用,在求函数的极值时,分类讨论了不同参量情况下的取值问题,在解答不等式的问题中,采用换元法,分类讨论各种情形的结果,同时也考查了学生的计算能力及分类讨论,属于难题.22.1. 2. 解析:1.因为曲线的极坐标方程为,即.将,代入上式,得即所以曲线的直角坐标方程为.于是所以由消去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国开大学劳动合同法形考
- 合同法36条对应民法典 区别
- 2024《集体合同示范文本》
- 2024新版个人对个人抵押合同范本
- 紧急事件安全防控
- 2024专卖店劳动合同范本
- 物业工程部技能培训课件
- 2024劳务分包合同范本建筑分包合同范本
- 2024所有户外广告合同标准版
- 2024《水电安装合同》
- 《西部放歌》歌词串词朗诵词
- 休克诊治的误区和教训
- PCBA常见的一般性不良现象
- 高速公路改扩建中央分隔带光缆保通实施性方案
- 弘扬伟大长征精神图文.ppt
- 西南石油大学 《油藏工程》教学提纲+复习提纲)PPT精品文档
- 六年级数学下册 圆锥的体积教案 西师大版 教案
- 企业质量管理体系程序文件(全套)
- 莫迪温产品介绍
- 天津市宝坻区土地利用总体规划(2015-2020年)
- 电子商务十大风云人物
评论
0/150
提交评论