工程数学作业_第1页
工程数学作业_第2页
工程数学作业_第3页
工程数学作业_第4页
工程数学作业_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章作业练习题1:设两点边值问题的精确解为现以h为步长划分区间为100等份,用差分近似代替微分,将微分方程离散化为线性方程组,代入初始条件后,得到如下的方程组问题其中,。(1) 分别用J迭代法,G-S迭代法和SOR迭代法求解,并与精确解进行比较;(2) 如果,再求解该问题解:输出结果为 精确值 J迭代值 GS迭代值 sor迭代值 0.0526 0.0501 0.0500 0.0504 0.1006 0.0961 0.0960 0.0966 0.1446 0.1384 0.1382 0.1391 0.1848 0.1774 0.1771 0.1782 0.2217 0.2132 0.2129 0.2142 0.2556 0.2462 0.2458 0.2474 0.2867 0.2767 0.2763 0.2780 0.3153 0.3049 0.3044 0.3063 0.3417 0.3309 0.3305 0.3325 0.3661 0.3551 0.3546 0.3568 0.3886 0.3775 0.3770 0.3793 0.4094 0.3984 0.3979 0.4002 0.4288 0.4178 0.4173 0.4197 0.4467 0.4359 0.4354 0.4379 0.4635 0.4528 0.4523 0.4548 0.4791 0.4687 0.4682 0.4707 0.4937 0.4836 0.4830 0.4856 0.5074 0.4976 0.4970 0.4996 0.5202 0.5107 0.5102 0.5128 0.5324 0.5232 0.5227 0.5252 0.5438 0.5349 0.5344 0.5370 0.5546 0.5461 0.5456 0.5481 0.5649 0.5567 0.5562 0.5587 0.5747 0.5668 0.5663 0.5688 0.5840 0.5765 0.5760 0.5784 0.5929 0.5857 0.5853 0.5876 0.6014 0.5946 0.5941 0.5965 0.6096 0.6031 0.6027 0.6049 0.6175 0.6113 0.6109 0.6131 0.6251 0.6192 0.6188 0.6210 0.6325 0.6269 0.6265 0.6286 0.6396 0.6343 0.6339 0.6360 0.6466 0.6415 0.6411 0.6432 0.6533 0.6485 0.6482 0.6501 0.6599 0.6554 0.6550 0.6569 0.6664 0.6620 0.6617 0.6636 0.6727 0.6686 0.6683 0.6700 0.6788 0.6750 0.6747 0.6764 0.6849 0.6812 0.6810 0.6826 0.6909 0.6874 0.6871 0.6887 0.6967 0.6935 0.6932 0.6947 0.7025 0.6994 0.6992 0.7007 0.7082 0.7053 0.7051 0.7065 0.7139 0.7111 0.7109 0.7123 0.7195 0.7169 0.7167 0.7180 0.7250 0.7226 0.7224 0.7236 0.7305 0.7282 0.7280 0.7292 0.7359 0.7337 0.7336 0.7347 0.7413 0.7393 0.7391 0.7402 0.7467 0.7447 0.7446 0.7456 0.7520 0.7502 0.7500 0.7510 0.7573 0.7556 0.7554 0.7564 0.7625 0.7609 0.7608 0.7617 0.7678 0.7663 0.7662 0.7670 0.7730 0.7716 0.7715 0.7723 0.7782 0.7769 0.7768 0.7775 0.7833 0.7821 0.7820 0.7828 0.7885 0.7874 0.7873 0.7880 0.7937 0.7926 0.7925 0.7931 0.7988 0.7978 0.7977 0.7983 0.8039 0.8030 0.8029 0.8035 0.8090 0.8081 0.8081 0.8086 0.8141 0.8133 0.8132 0.8137 0.8192 0.8184 0.8184 0.8189 0.8243 0.8236 0.8235 0.8240 0.8293 0.8287 0.8286 0.8291 0.8344 0.8338 0.8337 0.8341 0.8395 0.8389 0.8389 0.8392 0.8445 0.8440 0.8440 0.8443 0.8496 0.8491 0.8490 0.8494 0.8546 0.8542 0.8541 0.8544 0.8596 0.8592 0.8592 0.8595 0.8647 0.8643 0.8643 0.8645 0.8697 0.8694 0.8693 0.8696 0.8747 0.8744 0.8744 0.8746 0.8798 0.8795 0.8795 0.8797 0.8848 0.8845 0.8845 0.8847 0.8898 0.8896 0.8895 0.8897 0.8948 0.8946 0.8946 0.8947 0.8999 0.8996 0.8996 0.8998 0.9049 0.9047 0.9047 0.9048 0.9099 0.9097 0.9097 0.9098 0.9149 0.9147 0.9147 0.9148 0.9199 0.9198 0.9198 0.9199 0.9249 0.9248 0.9248 0.9249 0.9299 0.9298 0.9298 0.9299 0.9349 0.9348 0.9348 0.9349 0.9399 0.9399 0.9399 0.9399 0.9450 0.9449 0.9449 0.9449 0.9500 0.9499 0.9499 0.9499 0.9550 0.9549 0.9549 0.9549 0.9600 0.9599 0.9599 0.9600 0.9650 0.9649 0.9649 0.9650 0.9700 0.9699 0.9699 0.9700 0.9750 0.9750 0.9750 0.9750 0.9800 0.9800 0.9800 0.9800 0.9850 0.9850 0.9850 0.9850 0.9900 0.9900 0.9900 0.9900 0.9950 0.9950 0.9950 0.9950达到相同精度J迭代的迭代次数为: 4024达到相同精度G-S迭代的迭代次数为:2000达到相同精度sor迭代的迭代次数为: 478sor迭代最佳松弛因子:1.7000由结果可见对于此题达到相同精度迭代次数sor迭代G-S迭代0又B=所以B的特征值为所以1解得0 又为A的最大特征值所以使迭代法收敛的的范围是0(2)因为迭代矩阵的谱半径越小,迭代收敛越快.所以使迭代法的渐进收敛速度最大,最优松弛因子练习题3:对某电路的分析,可以归结为下面的线性方程组,其中R(1,1)=31;R(1,2)=-13;R(1,6)=-10;R(2,1)=-13;R(2,2)=35;R(2,3)=-9;R(2,5)=-11;R(3,2)=-9;R(3,3)=31;R(3,4)=-10;R(4,3)=-10;R(4,4)=79;R(4,5)=-30;R(4,9)=-9;R(5,4)=-30;R(5,5)=57;R(5,6)=-7;R(5,8)=-5;R(6,5)=-7;R(6,6)=47;R(6,7)=-30;R(7,6)=-30;R(7,7)=41;R(8,5)=-5;R(8,8)=27;R(8,9)=-2;R(9,4)=-9;R(9,8)=-2;R(9,9)=29;V=(-15, 27, -23, 0, -20, 12, -7, 7, 10)T其余元素为零。要求:(1)用高斯列主元消去法求解该方程组;(2)用SOR方法迭代求解该方程组,误差,近似最佳松弛因子由试算法确定,设解:输出结果为SOR方法迭代法近似最佳松弛因子为w=1.18,迭代次数为n=12高斯列主元消去法与SOR方法迭代比较: 高斯法值 SOR法值 -0.2892 -0.2892 0.3454 0.3454 -0.7128 -0.7128 -0.2206 -0.2206 -0.4304 -0.4304 0.1543 0.1543 -0.0578 -0.0578 0.2011 0.2011 0.2902 0.2902第四章作业练习题1:分别用不动点迭代法和牛顿迭代法求解方程其中初值,计算精度为。解:不动点迭代法使用进行迭代f=inline(-0.9*x2+1.7*x+2.5,x);df=inline(-1.8*x+1.7,x);x0=5;e=1e-6;n1=0;x1=17/9+25/9/x0;n1=n1+1;while (norm(x1-x0)=e)&(n1=e)&(n=e)&(n=1000) x0=x1; x1=x0-f(x0,a,b,p,R,t)/df(x0,a,b,p); n=n+1;end r=sqrt(norm(f(x1,a,b,p,R,t);v(i,j)=x1; end endv_n=v;if m=1 disp(气体为氧气)else disp(气体为二氧化碳)enddisp(v_n)enddisp(输出摩尔体积v(单位为mol/L)理想值:)T=400 600 800;p=1 10 50 100;v_i=zeros(4,3);for i=1:4; for j=1:3; v_i(i,j)=R*T(j)/p(i); endenddisp(v_i);结果:结果输出4*3矩阵,1到4行压力分别为1、10、50、100atm,1至3列温度分别为400、600、800K用van der Waals方程计算得到的摩尔体积v(单位为mol/L)结果为:气体为氧气 32.8120 49.2366 65.6543 3.2728 4.9276 6.5756 0.6484 0.989

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论