已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学号:20105031305本科毕业论文学 院 数学与信息科学学院 专 业 数学与应用数学 年 级 2010级 姓 名 论文题目 关于和与积相等的矩阵对 指导教师 职称 讲师 2014年5月3日 12目 录摘 要1关键词1Abstract1Keywords10 前言11 引理及相关定理22 满足的矩阵对的一些性质63 主要结论及证明7参考文献12 关于和与积相等的矩阵对姓名:王亚辉 学号:20105031305数学与信息科学学院 数学与应用数学专业指导教师:张艳艳 职称: 讲师摘 要:满足的矩阵对之间有着密切联系.本文从矩阵的秩、迹、非奇异性、特征值、对角化等方面,讨论了矩阵对的一些性质,并给出满足这种矩阵对条件下的一些特殊矩阵在迹与秩,行列式计算等方面的性质.关键词:特征值;秩;迹;矩阵对;Hermite阵Matrix having equal sum and productAbstract:If matrix pair satisfies the condition , these two matrices have some connections. In this paper, we discusses some properties of the matrix from the rank , trace, invertibility, eigenvalues, diagonalization, and give the nature of some special matrix which satisfies this matrix in trace and rank, the determinant calculation and so on .Keywords:Eigenvalue; Rank; Trace; Matrix pair; Hermite matrix0 前言矩阵的和与乘积是矩阵的两种基本运算,它们的特征值、秩、正定性等方面的关系问题,在理论上和实际应用中都很有意义,例如 矩阵特征值与奇异值估计在矩阵计算、误差分析中有着重要的应用, 因此对矩阵和与乘积的研究得到了许多学者的关注.对于两个阶矩阵,的乘积,一般主要研究它们的可交换性. 但事实上, 矩阵对 ,它们的和与积相等. 这对矩阵在矩阵的秩、特征值和特征向量、正定性、非奇异性等方面都有一些很密切的联系.通过对此题目的探讨不仅可以加深对矩阵的进一步了解同时也将所学知识与实际结合,更加深刻认识特殊矩阵在实际中的重要应用.文中表示阶单位矩阵,为矩阵的秩,表示矩阵的转置,为阶Hermite 矩阵,为矩阵的迹,表示矩阵的共轭转置,和分别为矩阵和的Kronecker积和Hadamard积.以下用表示集合:,即阶矩阵对符合条件.如矩阵和以及和都是符合条件的矩阵对.1 引理及相关定理定义 设且,若,有,则为正定矩阵.定义 设,若,则称为规范矩阵.引理 若是正定矩阵,则.引理2 若,是非奇异矩阵,则是正定矩阵的充要条件是是正定矩阵.引理 是规范矩阵,若,则是正定矩阵.引理4 相似的矩阵有相同的特征值.引理5 阶矩阵,符合条件的充分必要条件是和互为逆矩阵;且若矩阵对符合条件,则及 证明 因为 .即. 又和互为逆矩阵,所以,故.引理6 若矩阵对符合条件,则存在阶非奇异矩阵和,使得.证明 由引理1显然得证.引理 (Hoffmanwieland定理)设,均为实对称阵,它们的特征值分别为:,则,的特征值之间有如下关系成立:引理 (Neumann 不等式)设,的特征值分别为,则 (1)设,的奇异值分别为,则 (2)引理 设是交换族,那么存在一个酉阵,使得对每个,是上三角的.定理1 设、,是正定对称矩阵,则是正定矩阵的充要条件是.证明 若是正定矩阵,由引理2知,是正定矩阵,由引理1得.反之,若,则由引理4得.因 故 因此,是规范矩阵,由引理3知,是正定矩阵.由引理2知是正定矩阵.定理2 若矩阵对符合条件,则(1)矩阵和的特征值均不为1;若是的特征值,则对应的特征,和有公共的特征向量系;(2)可以对角化的充分必要条件是可以对角化,即,可以同时对角化;(3)若有个不同的特征值,存在一个次数不超过的多项式使得,证明 (1)由引理1,即1既不是的特征值,也不是的特征值.设是矩阵的特征向量,对应的特征值是,则,而,故,,所以也是矩阵的特征向量,对应的特征值为 ;若是矩阵的特征向量,同理可证它也是的特征向量,这说明与有公共的特征向量系.(2) 只证必要性.由相似于对角矩阵,因而存在非奇异矩阵,使,为的特征值,所以令则, 为的特征向量,由(1) 知, 也是矩阵B的特征向量,设,为的特征值, ,则,于是相似于对角矩阵.(3) 有个不同的特征值,故可对角化,由(2) 知也可对角化. 令,取多项式,由于互不相同,根据 Lagrange 插值定理可知,存在一个次数不超过的多项式 ,使得 ,则 ,即有,从而 ,定理1得证.推论 设,为正定的Hermite 阵,且满足条件,则存在酉阵,使得和同时为对角阵.定理3 若,都是数域上满足条件的矩阵,若,的特征值都在中,则存在上非奇异矩阵,使得及都是上三角矩阵,即,可同时上三角化.证明 对矩阵的阶数用数学归纳法.当时,结论显然,假定对阶矩阵结论成立,因为,满足条件,则,且与有公共的特征量,不妨,其中,分别为,的特征值,则存在上的阶非奇异矩阵,使得,其中向量,都是阶矩阵.显然,于是根据归纳假设,存在上的阶非奇异矩阵,使得及同时为上三角矩阵.令,则为上三角阵.同理也是上三角矩阵,定理2得证.推论1 设矩阵对满足条件,若是Hermite矩阵,则也是Hermite 矩阵,且存在阶酉矩阵,使得和为对角矩阵.证明 因为是阶Hermite 矩阵,所以存在阶酉矩阵,使得,由定理1中(2)可知,显然,也是Hermite 矩阵,且可同时对角化,推论1得证.推论2 设,是满足条件的正规矩阵,则,都是正规矩阵,且存在酉矩阵,使得和为对角矩阵.推论3 若矩阵对满足条件,则下列条件等价:(i) 非奇异,(ii)非奇异,(iii)或非奇异,(iv)非奇异.推论4 设,是满足条件的正定(或半正定)矩阵,则,及都是正定(或半正定)矩阵. 两个Hermite 矩阵积与其特征值之间的关系问题有著名的Neumann 不等式,两个实对称矩阵和的特征值关系问题有Hoffmanwielandt 定理,故由引理3,引理4及推论1和4,有推论5 设,是满足条件的正定矩阵,则对任意正整数,有.推论 6 若,是满足条件的Hermite 阵,设为的特征值,则为的特征值,为和的全体特征值.2 满足的矩阵对的一些性质性质1 如果,则有(1) ,均为正整数;(2) ,其中是的多项式,即与的多项式可交换;(3) ,为整数;(4) (矩阵二项式定理),为整数;(5) ,为整数;性质2 (1)若且是可逆的,则可交换;(2)若且是可逆的,则可交换.性质3 (1)若且是正交阵,则可交换;(2)若且是正交阵,则可交换.3 主要结论及证明结论1 是正定矩阵,、都是对称矩阵且满足,则是正定矩阵的充要条件是.证明 因为,由引理5得.从而易得,而为实数,由定理1即得结论. 结论2 矩阵,为满足条件的阶Hermite阵,且,则 .上述等式成立当且仅当存在一个具有标准正交列的矩阵和某个使得. 证 明 设是的非零特征值,由Cauchy-Schwarz不等式得:,即.因为,满足所以,即.所以,可交换.又知,均为Hermite阵,所以为Hermite阵. 下面对等号成立进行证明.充分性:若,且为标准正交列的矩阵,则 .从而 必要性:记,则且,为非零矩阵.为Hermite阵,存在酉阵使得,其中,酉阵由矩阵的特征向量正交化,单位化得到,即,且,()为的非零特征值.所以又知,所以,将上式展开后重新合并可得: 易得 .记,则,.结论3 矩阵,均为阵,且,则 .证明 因为所以 又知,所以.即有 故 . 结论4 设分别有特征值和 且,则存在指标 的一个排列,使得的特征值是.证明 因为,所以.根据引理9可得,它们可以同时上三角化,即存在酉矩阵,使得和都是上三角矩阵,且分别具有对角元及,又有对角元且以它们为特征值,同时,由于相似于,所以它们必定也是的特征值.由结论4可得推论4.1和推论4.2.推论4.1 且,则的各特征值之和是的各特征值和加上的各特征值的和.证明 由结论4得,的特征值为,故的特征值之和为又知的特征值之和为的特征值之和为 显然推论4.1成立.推论4.1的另一种表述 若且,则.推论4.2 若且,和 分别为的特征值,则是非奇异矩阵.证明 由结论4知的特征值是其中,为的一个重新组合.又知,所以,即 均不为零,所以有个非零特征值,故非奇异.结论5 ,且满足,如果对角阵的主对角线上的元素互不相等,那么也是对角阵.证明 设,其中(),(),因为,故,可得,整理得,又因为时,故时,.参考文献1 杨兴东. 矩阵之和的特征值与奇异值估计J.数学杂志,2004,24(3): 263 - 266.2 席博彦,张晓明. 关于矩阵和与矩阵积的特征值的关系J. 数学研究论,2004,24(4): 689 - 696.3 伍俊良,刘飞. 实对称矩阵和与差的一些特征值与F2范数不等式J. 高等学校计算数学学报,2004,26(4): 365 - 370.4 Sha Hu-yun. Estimation of the Eigenvalues of A B for A 0 ,B 0J. Linear Algebra Appl, 1986,73:147 -150.5 黎罗罗. 可交换厄米特矩阵乘积的特征值J.中山大学学报(自然科学版),1999,38 (2): 6 - 9.6 黄涵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年湄潭县水务局选调所属事业单位工作人员考试真题
- 诚信应考的国旗下演讲稿500字范文5篇
- 读书班会主持稿5篇
- 节能环保设备技改项目可行性研究报告
- 砂石料生产线承包合作协议书
- 安全伴我同行演讲稿5篇
- 智能家居维修工聘用合同
- 设计概论试题
- 市场的调研报告8篇
- 语文培训机构讲师聘用合同
- 汽车检测技术 课程设计
- 七年级语文上册18-我的白鸽课件
- 素描入门基础画单选题100道及答案解析
- 期中模拟检测(1-3单元)2024-2025学年度第一学期苏教版一年级数学
- 四川省食品生产企业食品安全员理论考试题库(含答案)
- 机织服装生产中的质量控制体系建设考核试卷
- 病理学实验2024(临床 口腔)学习通超星期末考试答案章节答案2024年
- 2024年广西安全员C证考试题库及答案
- 期末测试卷(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024至2030年中国手机配件产业需求预测及发展趋势前瞻报告
- 2024年小学闽教版全册英语词汇表
评论
0/150
提交评论