流体机械毕业设计说明书(IS离心泵).doc_第1页
流体机械毕业设计说明书(IS离心泵).doc_第2页
流体机械毕业设计说明书(IS离心泵).doc_第3页
流体机械毕业设计说明书(IS离心泵).doc_第4页
流体机械毕业设计说明书(IS离心泵).doc_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西华大学毕业设计说明书 目 录摘要31 前言42 叶轮的水力设计5 2.1 泵的主要设计参数和结构方案的确定5 2.2 叶轮主要参数的选择和计算6 2.3 叶轮的绘型11 2.4 作叶轮进出口速度三角形233 压水室的水力设计24 3.1 压水室的作用及螺旋型压水室作用的原理24 3.2 压水室的设计和计算264 结构设计31 4.1 主轴的结构设计31 4.2 装配图轮廓尺寸的初定 315强度计算33 5.1 泵轴的强度计算33 5.2 键的强度计算39 5.3 轴承寿命的计算406 结论44总结与体会45谢词46参考文献47摘 要本设计是根据给定设计参数完成单级单吸离心泵IS200150250的水力及结构设计,主要包括叶轮、压水室的水力设计和泵的结构设计。确定出叶轮的几何参数,绘制并检查叶轮轴面投影图,采用方格网保角变换法完成扭曲形叶片绘形。利用数字积分法,根据蜗壳内速度矩守恒,确定出蜗壳八个断面参数,并进行绘形。最后对泵进行结构设计,绘制了装配图和部分零件图,并对轴进行了强度校核计算。关键词:离心泵;叶轮;蜗壳;水力设计;结构设计AbstractAccording to the design parameters at the given point, this paper accomplished the design of the centrifugal pump. It mainly contained the hydraulic design of the impeller, volute casing and structural of pump, structural design of the pump. Based on the resolution method of design of the pump, author obtained the geometric parameters of the impeller. Then author projected and checked the cross-section of impeller, drew the cylindrical blade using methods of grid square conformal transformation. On the basis of constant velocity moment, author calculated parameters of cross-section of volute using digital integral method. Author also drew the spiral curve and diffuser of volute casing. Finally, the structural of the pump was designed and assembly drawing component graphics were drew. In addition, this program has been checked strength of the pump shaft.【Key words】:centrifugal pumps;impeller;volute casing;hydraulic design;structural design1前言水泵是一种应用广泛的水力通用机械,在航天、航空、发电、矿山、冶金、钢铁、机械、造纸、建筑以及农业和服务业等方面都有着广泛的应用。近年来,在农田水利建设和石油化学等工业部门的迅猛发展中,对离心泵的需求越来越大。本次设计是根据给定设计参数完成IS200-150-250型离心泵水力及和结构设计,并完成泵总装图的绘制。该泵在设计点运行参数如下:扬程,流量,转速,效率,必需空蚀余量;抽送介质为温度小于的清水或物理、化学性质类似于水的其他液体。根据以上设计参数,完成如下设计内容:(1) 叶轮水力设计,进行叶片绘形;(2) 压水室水力设计,进行压水室绘形;(3) 验算泵的抗汽蚀性能;(4) 完成总装图的绘制;(5) 对泵的主要零件进行强度校核;(6) 编写设计计算说明书,完成3000字专业文献英译汉。叶轮的水力设计叶轮是泵的核心部分,泵的性能、效率、抗空蚀能力、特性曲线的形状,都与叶轮的水力设计有紧密的关系。2.1泵的主要设计参数和结构方案的确定2.1.1给定的数据和要求(1)泵的型号:IS200150250(2)流量: (3)效率:。(4)扬程: (5)转速: (6)必需空蚀余量(7)介质的性质:温度小于的清水或物理化学性质类似于水的其他液体。2.1.2确定泵的进出口直径首先由给定的泵的标准型号IS200-150-250,即可得泵进口直径 泵出口直径。2.1.3汽蚀验算汽蚀比转数可知,转速、汽蚀基本参数和这三个参数之间有确定的关系,如得不到满足,将产生汽蚀。对于一定值,假设提高转速,则将增大,当该值大于所提供的装置汽蚀余量时,就会发生汽蚀。按汽蚀条件来确定泵的转速的方法,是先选择值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件下所允许的转速。即 式中:=(考虑汽蚀的安全余量)。汽蚀允许转速:经验算可知,转速小于汽蚀允许转速,符合要求。2.1.4计算比转速,确定泵的水力方案比转速公式为 取186在范围,泵的效率最高,当时,泵的效率将显著下降。采用单级单吸式时过大,可考虑改成双吸,反之采用双吸过小时,可考虑改成单吸式叶轮,泵的特性曲线的形状也和有关。本次设计选用单级单吸式的水力方案。2.2叶轮的主要参数的选择和计算叶轮主要几何参数有叶轮进口直径、进口当量直径、叶轮轮毂直径、叶片进口安放角、叶轮出口直径、叶轮出口宽度、叶片出口角和叶片数Z。叶轮进口几何参数对汽蚀具有重要影响,叶轮出口几何参数对性能(H、Q)具有重要影响,而两者对效率均有影响。2.2.1叶轮进口直径的确定叶轮进口直径与进口速度有关,从前限制进口速度一般不超过,认为进一步提高叶轮进口流速会降低泵的抗汽蚀性能和水力效率。实践证明:泵在相应增加进口很广的范围内运转时,能保持水力效率不变,所以如果设计的泵对抗汽蚀性能要求不高,可以选较小的以减少叶轮密封环的泄漏量,以提高容积效率。决定叶轮内水力损失的速度是相对速度的大小和变化,所以应当考虑泵进口对相对速度的影响,通常在叶轮流道中相对速度是扩散的,即。这样从减小进口相对撞击损失的流道中的扩散损失考虑,都希望减小,若假定最小 ,可推出计算叶轮进口直径的公式。进口当量直径:,圆整取192mm式中:根据统计资料,对此泵确定为=4.5进一步增加,可以改善大流量下的工作条件,提高泵的抗汽蚀性能考虑效率和汽蚀,的选用范围是:主要考虑效率 =3.54.0 兼顾效率和汽蚀=4.05.0主要考虑汽蚀=5.05.5这里选取=4.5轮毂直径:所以叶轮进口直径:2.2.2叶轮出口直径的初步计算 叶轮外径和叶片出口角等出口几何参数,是影响泵的扬程的最重要的因素。另外,影响泵扬程的有限叶片数修正系数也与和及叶片数等参数有关。可见影响泵的扬程的几个参数之间互为影响。因此,必须在假定某些参数为定值的条件下,求解叶轮外径。因为压水室的水力损失和叶轮出口的绝对速度的平方成正比。为了减少压水室的水力损失,应当减小叶轮出口的绝对速度,因此,我们把在满足设计参数下使叶轮出口绝对速度最小作为确定的出发点。由叶轮出口速度三角形叶轮出口轴面速度和圆周分速度均与叶轮外径有关,现将表示为的函数,由基本方程式推出的计算公式并计算出具体的数值为:取。2.2.3叶轮出口宽度的计算与选择由于制造关系,这里取2.2.4叶片数的选择叶片数对泵的扬程、效率、汽蚀性能都有一定的影响。选择叶片数时,一方面考虑尽量减少叶片的排挤和表面的摩擦;另一方面又要使叶轮流道有足够的长度,以保证液流的稳定性和叶片对液体的充分作用。参考1P108,叶片数按比转速选择(表2-1),取。表2-13045456060120120300Z8107867462.2.5泵效率的选择与计算先分别计算或估算水力效率和容积效率,最后由已知的总效率推算出机械效率。(1)容积效率: 叶轮前后盖板外侧与腔内侧形成了两个充满液体的空腔,称为泵腔。叶轮前盖板处的间隙使前泵腔与叶轮进口相通,前泵腔的另一端与叶轮出口相通。在压力差的作用下,有一部分水流流出叶轮后,又经过前泵腔和叶轮进口间隙返回叶轮入口,这部分水从叶轮中获得的能量在流动过程中全部不可逆的转化为热能,形成一种能量损失。在后泵腔轮毂处,因为设有各种形式的密封装置,这一典型的流动可以忽略不计。因而叶轮进口密封间隙处的这一泄漏量代表了离心泵中典型的主要的容积损失。容积效率可以采用下面的一些经验公式计算: (2)水力效率 (3) 机械效率 由于知道总效率,又可以计算出 2.2.6精算叶轮外径叶轮外径是叶轮最重要的尺寸,故需要精确计算。以基本方程式精确计算,从理论上讲是比较严格的,但其中的水力效率,有限叶片修正系数,也只能用经验公式计算。实践证明,精确计算的数值是基本可靠的。 由基本方程式: 由出口速度三角形 所以整理后得: 由可以求得 离心泵一般是选择适当的角精算。(1)查相应资料,叶片出口安放角一般在的范围内,通常选用。对高比转速泵,可以取小些,低比转速泵可以取大一些。本次设计取。(2) 求叶片出口排挤系数,需要确定叶片厚度,轴面截线与轴面流线的夹角取。(3)第一次精确计算叶轮外径,按照初定尺寸画出轴面投影后计算。叶片出口排挤系数:理论扬程:修正系数: 其中取 静矩:叶片修正系数:无穷叶片理论扬程:在每次计算中都可以认为不变。出口轴面速度:出口圆周速度:出口直径:与初定的值相差超过,进行第二次精算。(4)第二次精确计算叶轮外径叶片出口排挤系数:出口轴面速度:出口圆周速度:出口直径: 与假定值相差小于,故可取为精确的叶轮外径。2.3叶轮的绘型叶轮是影响离心泵性能的主要零件。因此,准确的绘型是保证叶片形状的必要前提。叶轮全部几何参数确定后,应当根据这些确定的尺寸完成叶片绘型,为此应首先绘制叶轮轴面投影图。画图时,最好选择相近,性能良好的叶轮图作为参考,考虑泵的设计的具体情况加以改进。轴面投影图的形状,十分关键,应经过反复修改,力求光滑顺畅。同时,应考虑到:(1)前后盖板出口保持一段平行或对称变化;(2)流道弯曲不应过急,在轴向结构允许的情况下,以采取较大的曲率半径为宜。设计时参考性能较好的相同比转速叶轮轴面投影图形状来绘制。2.3.1叶轮轴面投影图的绘制轴面投影图绘制的已知控制尺寸只有四个:叶轮半径,叶轮进口直径,叶轮出口宽度和轮毂直径,所绘轴面投影图应当满足这四个已知尺寸。绘制低比转速叶轮轴面投影图时,应注意以下问题:轴面图上,前后盖板内表面的投影在叶轮出口部分,在低比转速叶轮中都是直线。为提高叶轮水力效率和保证圆柱形叶片进口冲角不至太大,这两条直线应对称布置。叶轮流道宽畅一些,有利于减少叶轮的水流速度,降低水力损失,也有利于增强叶轮抗气蚀性能,保证有少量气泡出现后泵的外特性不致迅速变化。前盖板以一段圆弧过渡两直线,该圆弧应于两直线相切。在泵的轴向尺寸要求不严格时,可取大一些。后盖板流线下部一半也以一段圆弧构成,此圆弧与直线相切,也应与1/2的水平线相切(对于轴不穿越叶轮吸入口的叶轮,水平线指叶轮轴心线,这时并不强求圆弧与轴心线一定相切),比值一般在1.22这一范围内。必要时,过渡圆弧也可以用两相切圆弧构成。 2.3.2检查轴面流道过水断面变化情况轴面投影图画出之后,必须检查流道面积变化是否合理,如图2-1。如果流道面积无规律变化,则会产生局部漩涡,增大损失。图2-1 轴面液流过水断面检查步骤如下:(1)在周面投影图流道内作610个内切圆。内切圆个数越多,检查精度越高,但是工作量也越大。将这些内切圆圆心用光滑的曲线连接起来,便是叶轮流道中心线。(2)依次量出各计算点过水断面形成线与流道中线交点到叶轮进口中点的曲线距离,并分别按上述方法计算出面积,流道中线如图2-2所示。(3)连接相应的圆心与前后盖板的切点,如下图中三角,将三角形中垂线分为三等分,分点为和。过点且和轴面流线相垂直的曲线是过水断面的形成线,其长度可得。过水断面形成线的重心近似认为和三角形的重心重合(点),重心半径为。设曲线长为b,曲线绕叶轮轴心线旋转一周所得的轴面液流过水断面面积可用来计算。依次量出各计算点过水断面形成线与流道中线交点到叶轮进口中点的曲线距离,并分别按上述方法计算出面积。图2-2 流道中线图各过流断面的面积计算出后,可用纵坐标表示过流断面面积,用横坐标表示流道中线长度,做出值随变化的曲线,以观察沿流道的变化情况,如表2-2所示:表 2-2 F-L曲线计算表序号(mm)(mm)(mm)14898289380260833127453388633481692411253372781195131494031113961494643043158由此表画出曲线,如图2-3所示:图2-3 F-L曲线一般来说,如曲线为直线或者接近直线的光滑曲线,则叶轮轴面投影图就是合理的。2.3.3作中间流线图 一元理论假设流动是对称的,即每个轴面上的流动是相同的。在同一过流断面上轴面速度相等,做流线就是将每一个过流断面分成几个面积相等的单元面积。反映在轴面投影图上就是这些流线将过流断面形成线分成若干小段,而每段长度和其形心道叶轮轴心线距离与的乘积相等。三条流线将过流断面形成线分成两部分,而,形心到轴心线距离分别为,。得:= 或 =。作中间流线时可以随手勾画出流线的形状,然后进行验算。在同一过流断面上分成的每一单元过流断面面积都相等。否则,重新修改流线形状,直到面积相等为止。当过流断面形成线被分成几部分后,这些小段曲线与直线相近,检查时可以近似的取每一小段弧线的中心点作为该小段的形心。在作中间流线过程中,要想在同一过流断面上分成几个绝对相等的面积是可能的,但是这样工作量太大,因此在作中间流线过程中,允许在同一过流断面上分成若干个有一定误差的断面。一般允许误差不得超过在同一过流断面上各小段面积的平均值的。表2-3 划分中间流线面积检查计算表过水断面流道误差10-167.833.922982299.50.07%1-228.181.923010.07%20-16038.823282335.50.32%1-228.482.523430.32%30-137.673.227502745.50.16%1-229.692.627410.16%40-126.8110.1295129270.81%1-228.6101.529030.83%50-124.2130.531583152.50.17%1-224.8126.931470.17%60123148.63418341801-223148.634180最后根据计算数据得如图2-4所示。 图2-4 中间流线的划分轴面流线是轴面和流面的交线,也就是叶片和流面交线的面投影;一条轴面流线绕轴旋转一周形成的回转面是一个流面。因而,要分流面就是将每一过流断面分成几个面积相等的单元面积,反映在轴面投影图上就是将过流断面分成若干小段,按每个圆环面积相等确定分点。2.3.4叶片进口安放角的选择和计算(1)叶片进口边的确定在画出叶轮轴面投影图之后,应在图中画出叶片进口边,进口边的位置对叶轮的汽蚀性能关系密切,叶片进口边的形状也对汽蚀初生有直接的影响。适当向叶片入口延伸,有利于提高叶轮抗汽蚀性能。进口边各点叶片安放角相差不大,实际叶片进口边都置于同一轴面内。在叶片轴面投影图上绘制叶片进口边时,应当注意:进口边与前后盖板轮毂线的夹角不要太小,A、B两点的高度差不要太大,且过A、B两点的直线与轴心线夹角一般在内。本次设计叶片进口边的确定如图2-5所示。图2-5 叶片进口边的确定(2)进口安放角的确定叶片进口角,通常取之大于液流角,即,其正冲角。冲角的范围通常为。采用正冲角可以提高抗汽蚀性能,并且对效率影响不大,对于扭曲叶片可沿叶片进口边各流线加同一冲角;也可以在前盖板流线处使用最大冲角,因为这里是汽蚀敏感区,冲角从前盖板到后盖板递减。其原因可做如下解释: 用正冲角,能增大叶片进口角,减少叶片的弯曲,从而增大叶片进口过流面积,减小叶片的排挤,最终减小叶片进口的和。 用正冲角,在设计流量下,液体在叶片进口背面产生脱流。 用正冲角,能改善在大流量的工作条件。若经常在大流量下运转,应选较大的冲角。叶片进口边有时和过水断面形成线重合,有时不重合。进口边与三条流线的交点、三点的过水断面不同。(3)叶片进口角的确定叶片进口角是叶轮主要几何参数,对泵的性能参数、水力效率和特性曲线的形状有重要影响。常用的范围是,增大角,在相同流向下叶轮出口速度增大,压水室的水力损失增大,并且在非设计流量下冲击损失增大,容易使特性曲线出现驼峰。本次设计取。2.3.5计算出口速度出口圆周速度:出口轴面排挤系数: 出口轴面速度: 出口圆周分速度:无穷叶片出口圆周分速度:叶片进口圆周速度: 2.3.6作叶片进口边并计算叶片进口速度叶片进口边在平面上的投影在同一个轴面上的为好。但是也可以不在一个轴面投影图上,在叶轮的轴面投影上作叶片的进口边,应尽量使叶片进口边之间的几条流线趋于相等。进口边和流线夹角最好是直角。叶片进口边轴面投影的形状,从铸造的角度出发,最好为一直线或是有一曲率的圆弧。叶片进口边向吸入口方向适当延伸,以提高叶轮的抗汽蚀性能,并能使泵性能曲线上出现驼峰的可能性减小,并要求所做的进口边应使前后盖板的长度不能相差太大,否则容易产生二此回流。作图时应考虑以上的综合因素,并参照比转速相近的模型,作出出口边。(1)作叶片进口边并计算叶片进口速度(2)计算进口角 假设 取与假定的相符。 得 得B流线叶片进口排挤系数:B流线轴面进口速速:B流线叶片进口液流角: B流线叶片进口冲角:C流线叶片进口排挤系数:C流线轴面进口速度:C流线叶片进口液流角: C流线叶片进口冲角:一般来说,应该采用正冲角,能够减小排挤,增大过流能力,减小叶片弯曲,增加叶片进口过流面积,且采用正冲角,在设计流量下,液体在叶片进口背面产生脱流。因为背面是叶轮流道的低压侧,在这里形成的旋涡不容易向高压侧扩散,因而旋涡是稳定的、局部的、对汽蚀影响较小。采用正冲角,还能改善在大流量下的工作条件,即泵在大流量下运转,则应选择较大正冲角。2.3.7叶片绘型所谓叶片绘型就是画叶片。为此,应当在几个流面上画出流线(叶片骨线),然后按一定规律把这些流线串起来,变成了无厚度的叶片。画叶片有两种方法,作图法和解析法。在本次设计中,采用保角变换法进行叶片绘型。绘型原理:在一流面上,其上有一条流线。用一组夹角为的轴面和一组垂直轴线的平面去截流面,使之在流面上构成小扇形格网,并且令小扇形的轴面长度,和圆周方向上的长度相等。当所分的这些小扇形足够小时,则可以把流面上的曲面扇形,近似看作是小平面正方形。流面上的小扇形从进口到出口逐渐增大。所谓保角变换,顾名思义,就是保证空间上流线与圆周方向的角度不变的变换。在平面上的展开流线只要求其与圆周方向上的夹角和空间流线的角度对应相等。展开流线的长度和形状则于实际流线可能不相同。因此只在相似,而不追求相同。可以设想把流面展开成圆柱面,然后把圆柱面沿母线切开,展开成平面。由此可见,空间流线穿过流面上小扇形,将扇形两边分别切成两段,相应的流线在平面方格网上,把正方形两边分别切成成比例的两段,由相似的关系,则对应的角度相等,即保持角度不变,变换到(平面和轴面投影)上。因为所有绘制扭曲叶片的方法,均适宜于绘制圆柱叶片,故以扭曲叶片为例进行叙述。沿轴面流线分点分点的实质就是在流面上画特征线,组成扇形格网。因为流面可以用轴面图和平面图表示,因此,分点在轴面图上沿以条流线(相当于一个流面)进行。流面就是轴对称的,一个流面的全部轴面流线均相同,所以只要分相应的一条轴面流线,就等于在整个流面上绘出了方格网。流线分点的方法很多,现在介绍两种:a)逐点计算法: 式中:任取的两轴面间的夹角,一般取,取的角度越小,分的点就越多; 流面上的扇形中心(轴面流线两分点中间)的半径。分点的方法是叶轮出口,沿轴面流线任意取,量出段中点的半径,按照计算。如果算得的等于预先取的,则分点是正确的。若不等于,重新取,再算直到两者相等。继而,从分得的点起,再分第2,3,4点,这种方法的缺点是容易产生积累误差。b)作图分点法:在轴面投影图旁,画两条夹角等于的射线。这两条射线表示夹角为的两个轴面。与逐点计算分点法相同,一般取。从出口开始,先试取,若的中点与半径对应的两条射线间的弧长,与试取的相等,则分点是正确的,如果不是相等的,就逐次逼近,直到=为止。第1点确定以后,用同样的方法分第2、3、4点。当流线平行轴线时,不变,用对应的截取流线即可,各流线用相同的分点。画展开流面(平面方格网)在其上绘制流线,因为保角变化法绘型时基于局部相似,而不追求局部相等,所以几个流面可以用一个平面方格网代替。方格网的大小任意选取,横线表示轴面流线的相应分点,竖线表示夹角为对应分点所用的轴面,画出方格网并把特征线进行编号。而后在其上绘制流线,通常先画中间流线。流线在方格网上的位置应该与相应轴面流线分点序号相对应。进出口角度应与预先确定好的值相符,包角大小可以灵活掌握。型线的形状极为重要,不理想时,应该坚决修改。必要时,可以改变叶片进口边的位置,包角的大小等。进口边在方格网中位于同一竖线上,进口边的三点位于同一条0竖线上,表示进口边位于同一轴面上,一般离心泵进出口边都位于同一轴面上。离心泵绘型的流线不理想时,进出口边均可不位于同一轴面上,如何布置,主要由方格网上流线的形状和下步所述的轴面截线形状的好坏来决定,如图2-6所示。图2-6 流线分点画轴面截线在方格网中画出的三条流线,就是叶片的三条型线。用轴面(相当于方格网中的竖线)去截这三条流线,相当于用轴面去截叶片,所截三点的连线,时一条轴面截线,把方格网中的每隔一定的角度的竖线和三条流线的交点,对应于编号1、2、3、4 的位置,用插入法分别插到轴面投影图相应的三条流线上,把所得 的点连成光滑的曲线,就得到叶片的轴面截线。轴面截线应该光滑,按照一定的规律变化,轴面截线和流线的夹角最好接近,一般不要小于。角太小,盖板和叶片的真实夹角过小,就会带来铸造困难、排挤严重和过水断面形状不良(湿周增长)等缺点。角可按照公式进行计算。叶片加厚方格网保角变换绘型,一般在轴面投影图上按照轴面截线所得的轴面截线为骨线向两边加厚,或认为是工作面向背面加厚。沿轴面流线方向的轴面厚度按照下式计算: 图2-7 流面展开方格网和叶片厚度变化规律2.3.8绘制叶片木模图绘制步骤:(1)在叶片的轴面裁剪图上,做垂直于叶轮的垂线1-1,2-2这些垂线实际上就是一些垂直于叶轮轴心线的平面,通常称为割面或者等高面。它们于叶片的交线就是叶片的木模截面。如果从叶轮入口方向看,叶轮为逆时针方向旋转。我们就把叶片工作面的木模截线画在平面投影图的右侧,把背面的木模截线画在投影图的左侧。本此设计的叶轮为逆时针方向旋转,直线1-1,2-2是等距离的,但也可以不是等距离。看设计者的需要,叶片扭曲较大处距离式可以取小一些。(2)以O点为圆心作叶轮外圆,并在其中做中心角为的轴面投影图的0、。(3)将沿后盖板处的叶片工作面,背面与后盖板的交线,以及前盖板处的叶片工作面与前盖板的交线投影到0点垂直线的左部,又将沿前盖板处的叶片工作面,背面与前盖板处的叶片工作面与后盖板的交线投影到0点垂直线的右部,于是便得到叶片的内外极限轮廓线。他们与叶片的入口和出口边在平面图上投影。就绘出了制造叶轮叶片木模的外围线。(4)作模型截线:在叶片的轴面投影图上,3-3割面截叶片背面的0、轴面截线于a、b、c三点,它们到轴心线距离分别为、。在平面投影图上以0为圆心,以、为半径画弧交于0、轴面投影线于a、b、c三点,将a、b、c三点光滑连接,就可以得到割面1-1截叶片背面的模型截线。同理:可作出其它各条模型截线。这样就完成了叶片木模图的绘制(注:在制造叶轮模型时,常常直接利用叶片木模裁剪图,因此,应在箔尺上量取叶片裁剪图的尺寸,如果没有箔尺,铸铁叶轮的所有尺寸应该加作为收缩量,钢和铜的叶轮应该加作为收缩量),木模截线图如图2-8所示。图2-8 木模剪截图2.4作叶片进出口速度三角形在前面的设计计算中,得到了各流线上的叶片的进出口流速,轴面流速,圆周速度,以及叶片的进出口液流角或出口角,加之叶片出口的圆周分速度,则可以作出进出口速度三角形。图2-9 叶片进口速度三角形图2-10 叶片出口速度三角形 压水室的水力设计吸水室位于叶轮之前,压水室位于叶轮之后,它们一起构成泵的过流部件,因为吸水室和压水室是固定的过流部件。一般不引入相对速度来研究其流动。通常所说的压水室是指螺旋型的压水室,环型压水室和导叶体的总称。获得能量的水流沿叶轮圆周流出后,将进入泵的压水室。压水室是泵不可缺少的重要过流部件,其设计、制造水平高低,对泵的性能,特别是泵的效率指标和H-Q曲线形态,有十分明显的影响。根据泵的用途不同,泵的压水室有不同的结构形式,但它们的基本功能则是相同的:收集从叶轮中的来流,将水流送到泵出口或下一级叶轮入口;水流在叶轮出口处绝对速度比较大,在低比转速叶轮中尤其是这样,水流在压水室出口的平均速度将显著下降,这种将水流的部分动能转化为压力能的结果,将使水流在泵出口管路中的水力损失减小。应该指出,由压水室排出的流量,在设计点,应当是用户给定的设计流量,而不是考虑了容积损失后引入的理论流量。此外,由于压水室是静止部件,设计中也不引入相对速度的概念。单级单吸及单级双吸泵中主要采用压水室为螺旋形压水室,多级泵中则采用径向或流道式导流器及空间导叶。螺旋形压水室具有适应性强,效率高,高效区宽的优点,其主要不足是过流内表面难以机械加工。螺旋形压水室由一段面积不断增大的螺线管(蜗壳)和一扩散管构成。3.1压水室的作用及螺旋型压水室作用的原理3.1.1压水室的作用(1)收集从叶轮流出的液体,并输送到排除口或下一级叶轮吸入口。(2)保证流出叶轮的流动是轴对称的,从而使叶轮内具有稳定的相对运动,以减小叶轮内的水力损失。(3)降低液流速度,使速度能转换成压能。(4)消降液体从叶轮的流出的旋转运动,以避免由此类造成的水力损失。压水室的种类有三种,相互比较,螺旋型压水室有以下优点,压水室的流动比较理想,适应性较强,高效率范围宽。因此螺旋型压水室为泵压水室的首选的考虑对象,但其流道不能机械加工,尺寸形状、表面粗糙只能靠铸造来保证,所以要保证螺旋型压水室的形状,设计质量铸造及工艺设计质量是关键。叶片式压水室一般可以单独制造,并可以进行机械加工,但水力方面不如螺旋型压水室理想。涡室主要用于单级泵和中开式多级泵,叶片式多用于多级泵,而导叶的环形压水室,能消除径向力,主要用于大型单级泵。本次设计选择螺旋型压水室。3.1.2螺旋型压水室的作用及原理 液体从叶轮流出后,进入两个平行的平板之间当忽略液体的粘性摩擦力时,液体不受任何外力作用,应遵从速度矩保持定理,即。压水室的形状,应当按照符合这种规律来设计。下面用数学公式来表示这种流动的迹线得到液体流动的轨迹后,按此轨道加作此固体壁。就作出了符合液体流动的压水室。因、为常数,所以流动的液流角保持不变,即液体从叶轮流出后的迹线是一条对称的螺旋线,液体的流动方向与圆周方向的夹角保持不变,这就是螺旋型压水室对称的由来。螺旋线上任意点的坐标可以为: 设时, 积分所以 ( 给定不同的弧度)利用叶轮出口稍后的速度三角形,求得,给定不同的角,可以求得相应的半径来从而可作出这条对数螺旋线来。实践中所作的螺旋型压水室,为了减小径向尺寸,压水室宽度多是扩散的,这样可以减小、角,从而达到减小径向尺寸的目的。所设计的螺旋型压水室,能满足压水室的要求。第一:压水室布置在叶轮出口外周,能够把从叶轮流出的液体收集起来。第二:在设计工况下,液体符合自由流动,轴对称的,从而保证了叶轮内的相对流动的稳定性。第三:压水室随着收集流量的增加,半径逐渐向排出口增加,减小,减小,从而实现动能向压能的转换。第四:由于压水室的出口的流动方向和涡室半径垂直,这种结构保证清除流动的螺旋分量。3.2 压水室的设计和计算3.2.1压水室的主要结构参数(1)基圆半径切于隔舌头部的圆称为基圆,用表示。应稍大于叶轮外径,使隔舌和叶轮间有适当的间隙,该间隙过小,容易因液流阻塞而引起振动和操声,但间隙过大,出增大径向尺寸外,因间隙处存在桌流动环,消耗一定的能量,间隙越大泵的效率下降越多。本次设计取 (2)压水室进口宽度通常大于包括前后盖板的叶轮出口宽度,至少应有一定的间隙,以补偿转子的转动和制造误差,目前有些压水室取得相当宽,以减少泵的径向尺寸,也好使得叶轮前后盖板带动的旋转的液体可通畅地流入压水室,回收部分圆盘摩擦的损失,提高泵的效率,另外可适应不同宽度的叶轮,提高产品的通用性。参考已有的同型号IS200-150-250高效泵压水室,取。(3)压水室隔舌安放角隔舌位于压水室螺旋线部分的始端,将螺旋线与扩散管隔开,习惯称头部的端面为0断面,隔舌与第断面的夹角为隔舌安放角,的大小应保证螺旋线部分与扩散管光滑连接,并尽量减少径向尺寸,高比转数泵大,大。压水室外壁向径向扩展的较大,因而取较大的角,以使形状协调。参考2,本次设计取。(4)隔舌螺旋角隔舌安放角是隔舌处内壁与圆周方向的夹角,为了符合流动规律减少液流的撞击,隔舌螺旋角应等于叶轮出口稍后的绝对液体流角。 由前面的计算得知:;故 得: 取。3.2.2压水室断面形状和各断面面积为了便于计算和绘图,压水室通常取8个彼此成的断面,即用8个轴面切割压水室,设计时先计算第断面,其他断面以第断面为基础进行确定。根据压水室的几种断面形状(梯形,矩形,任意形状),在此选择矩形断面形状进行设计计算。计算涡形体各断面面积时,是把涡形体中的圆周方向平均速度看作常数来设计的,计算时应先根据查取一个系数。参考3查,利用公式计算: 参考3P148,查取得计算断面的过流量,参考1,利用以下公式计算:则其它断面面积可利用公式同理:;。在计算出各断面的面积后,应根据选定的断面形状推出的断面面积计算公式,计算各断面距离轴心线的半径,经过计算各断面的得: 第断面;第断面;第断面;第断面;第断面;第断面;第断面;第断面。各断面的连接圆弧半径的计算公式如下:第断面;第断面;第断面;第断面;第断面;第断面;第断面;第断面。根据以上数据可以画出压水室轴面投影图如图3-1所示:图3-1 压水室轴面投影图 3.2.3压水室平面图的绘制根据计算得到的各断面半径,在平面图上相应的射线上点出,然后光滑连接所得的各点,得到涡室平面螺旋线.应注意各点应在圆弧光滑连接,即后段圆弧的圆心应当在前一段圆弧终点延长线。可以用四段圆弧连接这九点,在平面上形成光滑连续的蜗壳轮廓线。这四段圆弧应满足如下条件:由于不在同一直线上的三个点决定一个圆,0、三个点形成第一段圆弧。以下各段圆弧具有第一段圆弧类似的特点,如图3-2所示:图3-2 蜗壳平面图蜗壳的第断面既是螺线管的结束断面,又是扩散管的起始断面。扩散管在将来自压水室的水排出泵体的同时,将进一步把水的动能转化为压力能,以减小水流在排除管道中的水力损失。扩散管的主要几何参数有:1)排出口直径由于泵出口通常直接和管路连接,故它的出口的尺寸应参照标准尺寸决定,由IS200-150-250出口直径。2)扩散管高和扩散角为了减小扩散段的水力损失,扩散角一般取,扩散管高度可以根据进出口尺寸和扩散角决定,本次参照同型IS泵尺寸,取。 对梯形断面,中间断面、取在三等分扩散管高处。在确定中间断面时,可以把第断面画在出口圆内,然后作若干条射线,将两个断面间的射线三等分,光滑连接各分点,即可得到中间断面的轮廓线。也可以不等分,按照比例取各断面的点,如图3-3所示:图3-3 蜗壳断面图根据上述对螺旋管、扩散管绘形原理,可以做出螺旋形压水室的平面投影图,如图3-4所示:图3-4 压水室的平面投影图 4 结构设计在水力设计完成之后(吸水室、压水室等有关尺寸需与装配图配合起来设计),应该进行装配图的总体设计,包括泵的布置型式,零件结构、型号选择等。卧式机组结构简单,便于拆装、检修,因此采用卧式布置。4.1主轴的结构设计在设计泵的结构时,应首先考虑泵轴的结构设计,泵轴上所装零件的不同决定了泵轴的轴颈系列,同时考虑退刀槽、倒圆、倒角等。同时轴的轴向尺寸由零件装配尺寸决定,因此泵轴的设计应先确定径向尺寸。泵轴的具体型式见附录图纸04。4.2装配图轮廓尺寸的初定装配图是先定出轮廓线,叶轮中心线,叶轮流道,压水室断面,吸水室断面,加上泵体壁厚,叶轮盖板的厚度。(1)确定叶轮盖板厚度根据9,由叶轮直径确定盖板厚度,如图表4-1所示。表4-1 盖板厚度叶轮直径(mm)100180181250251520520盖板厚度(mm)4567本设计叶轮直径为,因此盖板厚度取为。(2)蜗室壁厚的设计计算蜗室的几何形状复杂,而且受力后产生的应力更加复杂。由10蜗室壁厚的计算公式为:式中:当量厚度;许用应力;铸铁;铸钢。本设计材料采用铸铁,有: ,取。(3)吸入室壁厚一般情况下,吸入室壁厚比蜗室壁厚要略低一些,但本设计的吸入室径向尺寸很大,为了达到强度要求,可取吸入室壁厚与压水室壁厚相等,即:。在完成了上述基本设计计算后,把所选择的零件画到相应位置上,尽量选用标准件,以减少制造成本,提高设计经济性,同时便于制造、组装。 5强度计算在泵的运行过程中,离心泵每个零件都承受各种外力作用,这些力的作用可能使得零件产生变形甚至破坏。一般把零件抵抗变形的能力叫刚度,把零件的抗破坏的能力叫强度。设计离心泵零件的时候,应考虑到使零件具有足够的强度和刚度,以提高泵的运行可靠性和安全性。从这个角度考虑,就要把零件尺寸做得大些,用更好的材料,但是从经济性角度考虑,则应该尽力让零件小些,材料的使用更加经济合理,以减轻材料重量,降低成本。如何解决这一矛盾,这就要合理确定泵的零件尺寸及材料,既满足泵零件强度和刚度的要求,具有更好的经济效益,这就是强度计算的目的。5.1泵轴的强度计算叶轮、轴套等零件都套在轴上,并同轴一起等速旋转,轴的强度对泵的运行可靠性及使用寿命都有影响。所以,对泵轴的强度的校核是十分重要的。5.1.1泵轴的强度校核泵轴的自重和套在轴上的叶轮,轴套等零件的重量,转子的径向力,叶轮平衡后的剩余不平衡所引起的离心力都会使泵轴弯曲。因此,泵轴是在弯矩、扭矩和轴向力的联合作用下工作的。轴强度的精确计算就是轴在扭转、弯曲、拉伸联合作用下的强度计算。1.作用在泵轴上的载荷及其计算:(1)径向力对于卧式泵转子的重量是径向力(包括轴的重量和轴上零件的重量);由于沿叶轮外缘压力分布不均而产生的作用在叶轮上的径向力,即附加径向力;由于叶轮及联轴器不可能绝对的静平衡,残余不平衡质量产生的离心力。作用在泵轴上的载荷,除了转子的重量外,其余皆与泵的运行工况有关,通常只计算设计工况时的,此时的附加径向力为零。A.计算泵轴的质量式中 : 轴各小段的直径; 轴各小段的长度;泵轴材料的密度,取 ;B.计算叶轮的质量叶轮的形状不规则,在计算具体不规则部分时可以分成若干的小部分,然后采用近似的规则图形近似计算总的质量。a)求叶片质量计算 叶片的质量时将叶片简化为一个厚度均匀的长方体,如图5-1所示叶片的厚度可按下式估算:图5-1 叶片简化图叶片的厚度可按下式估算 式中:系数,对于本设计取为4.5;叶轮的外径;单级扬程;则全部叶片的质量为 :b)计算前盖板质量 根据叶轮前盖板形状,将其简化为厚度均匀的圆环。厚度,考虑到前盖板有弯曲,可以适当缩小圆环内径,具体尺寸见图5-2所示。 图5-2 前盖板圆环c)计算后盖板质量根据装配图相关尺寸,并将后盖板简化为一个圆环和一个套筒,计算后盖板质量如下:C.联轴器的质量计算查机械设计手册选择凸缘联轴器型号为GYD6(GB5843-86)重量,公称转矩为。D.最大径向力公式 式中:径向力;扬程;叶轮出口直径;叶轮出口宽度(包括两盖板厚度);液体重度,水的重度为径向力系数,由下式确定。径向力系数计算公式如下:式中:设计流量;实际流量。经计算E.计算叶轮不平衡质量所产生的离心力 叶轮半径,最大半径上的不平衡重量。弹性块联轴器是标准件,可认为是静平衡的。叶轮不平衡重量所产生的离心力为:(2)轴传递的扭矩式中:配套功率; 泵的转速;式中:工况变化系数,此次设计取。(3)轴向力A.盖板力(向左)的计算计算轴向力时,可按如下经验公式进行:其中 带入得:B.动反力(向右)的计算 式中: ;则:总的轴向力,方向向左。2轴不同断面上的扭矩、弯矩、轴向力的计算 。图5-3 泵轴的强度计算根据上述计算数据,将泵轴简化为一简支梁,并考虑其最危险情况,降所有力移至左右两端。计算出,。作出泵轴不同断面上的扭矩图、弯矩图、剪力图,如图5-3所示。3强度校核 A.最危险断面的确定由图5-3可看出,最危险断面是泵轴的B断面,即靠近叶轮的轴承所在断面。B.弯曲应力式中:弯曲应力;所计算断面的弯矩;抗弯截面系数。对于无键槽的实心轴,可用下式计算:式中:轴的直径。即 得:C.拉应力式中: 拉应力;所计算断面的轴向力;所计算断面的面积。D.切应力式中:切应力;所计算断面的扭矩;所计算断面的扭转断面系数。对于无键槽的实心轴:E.折算应力按第四强度理论,折算应力为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论