




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter 2. Discrete-Time Signals and Systems,Gao Xinbo School of E.E., Xidian Univ. X ,Main Contents,Important types of signals and their operations Linear and shift-invariant system Easier to analyze and implement The convolution and difference equation representations Representations and implementation of signal and systems using MATLAB,Discrete-time signals,Analog and discrete signals analog signal t represents any physical quantity, time in sec. Discrete signal: discrete-time signal N is integer valued, represents discrete instances in times,Discrete-time signal,In Matlab, a finite-duration sequence representation requires two vectors, and each for x and n. Example: Question: whether or not an arbitrary infinite-duration sequence can be represented in MATLAB?,Types of sequences,Elementary sequence for analysis purposes 1. Unit sample sequence Representation in MATLAB,Function x,n=impseq(n0,n1,n2),A: n=n1:n2; x = zeros(1,n2-n1+1); x(n0-n1+1)=1; B: n=n1:n2; x = (n-n0)=0; stem(n,x,ro);,2. Unit step sequence,A: n=n1:n2; x=zeros(1,n2-n2+1); x(n0-n1+1:end)=1; B: n=n1:n2; x=(n-n0)=0;,3. Real-valued exponential sequence,For Example:,n=0:10; x=(0.9).n; stem(n,x,ro),4. Complex-valued exponential sequence,Attenuation: 衰减因子 frequency in radians: For Example: n=0:10; x=exp(2+3j)*n);,5. Sinusoidal sequence,Phase in radians For Example: n=0:10; x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n),6. Random sequence,Rand(1,N) Generate a length N random sequence whose elements are uniformly distributed between 0,1 Randn(1,N) Generate a length N Gaussian random sequence with mean 0 and variance 1. en 0,1,7. Periodic sequence,A sequence x(n) is periodic if x(n)=x(n+N) The smallest integer N is called the fundamental period For example A: xtilde=x,x,x,x B: xtilde=x*ones(1,P); xtilde=xtilde(:); xtilde=xtilde; transposition,Operations on sequence,1. Signal addition Sample-by-sample addition x1(n)+x2(n)=x1(n)+x2(n),Function y,n=sigadd(x1,n1,x2,n2) n=min(min(n1),min(n2): max(max(n1),max(n2); y1=zeros(1,length(n); y2=y1; y1(find(n=min(n1) ,2. Signal multiplication,Sample-by-sample multiplication Dot multiplication x1(n).x2(n)=x1(n) x2(n),Function y,n=sigmult(x1,n1,x2,n2) n=min(min(n1),min(n2) : max(max(n1),max(n2); y1=zeros(1,length(n); y2=y1; y1(find(n=min(n1) ,3. Scaling,ax(n)=ax(n),5. folding,y(n)=x(n-k) m=n-k; y=x;,4. Shifting,y(n)=x(-n) y=fliplr(x); n=-fliplr(n);,6. Sample summation ss = sum(x(n1:n2); 7. Sample production sp = prod(x(n1:n2);,8. Signal energy se = sum(x .* conj(x); or se = sum(abs(x) . 2); 9. Signal power,Examples,Ex020100 composite basic sequences Ex020200 operation on sequences Ex020300 complex sequence generation Ex020400 even-odd decomposition,Some useful results,Unit sample synthesis Any arbitrary sequence can be synthesized as a weighted sum of delayed and scaled unit sample sequence. Even and odd synthesis Even (symmetric): xe(-n)=xe(n) Odd (antisymmetric): xo(-n)=-xo(n) Any arbitrary real-valued sequence can be decomposed into its even and odd component: x (n)=xe(n)+ xo(n),Function xe, x0, m = evenodd(x,n) If any(imag(x) = 0) error(x is not a real sequence); End m = -fliplr(n); m1 = min(m,n); m2 = max(m,n); m=m1:m2; nm = n(1)-m(1); n1 = 1:length(n); x1 = zeros(1, length(m); x1(n1+nm) = x; x = x1; xe = 0.5 * (x + flipflr(x); xo = 0.5*(x - fliplr(x);,The geometric series,A one-side exponential sequence of the form an, n=0, where a is an arbitrary constant, is called a geometric series. Expression for the sum of any finite number of terms of the series,Correlations of sequences,It is a measure of the degree to which two sequences are similar. Given two real-valued sequences x(n) and y(n) of finite energy, Crosscorrelation Autocorrelation,The index l is called the shift or lag parameter.,The special case: y(n)=x(n),Discrete Systems,Mathematically, an operation T. y(n) = T x(n) x(n): excitation, input signal y(n): response, output signal Classification Linear systems Nonlinear systems,Linear operation L.,Iff L. satisfies the principle of superposition The output y(n) of a linear system to an arbitrary input x(n) is called impulse response, and is denoted by h(n,k),h(n,k): the time-varying impulse response,Linear time-invariant (LTI) system,A linear system in which an input-output pair is invariant to a shift n in time is called a linear times-invariant system y(n) = Lx(n) - y(n-k) = Lx(n-k) The output of a LTI system is call a linear convolution sum An LTI system is completely characterized in the time domain by the impulse response h(n).,Properties of the LTI system,Stability A system is said to be bounded-input bounded-output (BIBO) stable if every bounded input produces a bounded output. Condition: absolutely summable To avoid building harmful systems or to avoid burnout or saturation in system operation,Properties of the LTI system,Causality A system is said to be causal if the output at index n0 depends only on the input up to and including the index n0 The output does not depend on the future values of the input Condition: h(n) = 0, n 0 Such a sequence is termed a causal sequence. To make sure that systems can be built.,Convolution,Convolution can be evaluated in many different ways If the sequences are mathematical functions, then we can analytically evaluate x(n)*h(n) for all n to obtain a functional form of y(n) Graphical interpretation, folded-and-shifted version Matlab implementation Function y,ny=conv_m(x,nx,h,nh) nyb = nx(1)+nh(1); nye = nx(length(x)+nh(length(h); ny = nyb:nye; n = conv(x,h),Function form of convolution,Three different conditions under which u(n-k) can be evaluated: Case 1: n=9 % completely overlaps,Folded-and-shifted,Signals x=x(1),x(2),x(3),x(4),x(5) System Impulse Response: h=h(1),h(2)h(3),h(4) y=conv(x,h) y(1)=x(1)*h(1); y(2)=x(1)*h(2)+x(2)*h(1) y(3)=x(1)*h(3)+x(2)*h(2)+x(3)*h(1); x(1),x(2),x(3),x(4),x(5) h(4),h(3),h(2),h(1),Note that the resulting sequence y(n) has a longer length than both the x(n) and h(n) sequence.,Sequence correlations revisited,The correlation can be computed using the conv function if sequences are of finite duration. Example 2.8 The meaning of the crosscorrelation This approach can be used in applications like radar signal processing in identifying and localizing targets.,Difference Equation,An LTI discrete system can also be described by a linear constant coefficient difference equation of the form If aN = 0, then the difference equation is of order N It describes a recursive approach for computing the current output,given the input values and previously computed output values.,Solution of difference equation,y(n) = yH(n) + yP(n) Homogeneous part: yH(n) Particular part: yP(n) Analytical approach using Z-transform will be discussed in Chapter 4 Numerical solution with Matlab y = filter(b,a,x) Example 2.9,Zero-input and Zero-state response,In DSP the difference equation is generally solved forward in time from n=0. Therefore initial conditions on x(n) and y(n) are necessary to determine the output for n=0. Subject to the initial conditions:,Solution:,Zero-input and Zero-state response,yZI(n): zero-in
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年幼儿口语类测试题及答案
- 2025年参数估计测试题及答案
- 2025年注会合同法试题及答案
- 2025年考试试题阅读理解及答案
- 2025年母婴保健试题100道及答案
- 2025年召唤与合成测试题及答案
- 2025年北安医院面试题型及答案
- 2025年矿区招聘考试试题及答案
- 2025年利群时代培训试题及答案
- 2025年物理力的测试题及答案
- 元朝的建立与统一课件 2024-2025学年统编版七年级历史下册
- 2025年安徽港航集团所属企业招聘13人笔试参考题库附带答案详解
- 2025年春花城版(2024)小学音乐一年级下册教学计划
- 溶质的质量分数课件-九年级化学人教版(2024)下册
- 二零二五年度房屋租赁合同附带租户隐私保护协议
- 2025年上海市安全员《C证》考试题库及答案
- 2025年湖南汽车工程职业学院单招职业技能测试题库完整版
- 信鸽卖买合同范本
- 民用无人机操控员执照(CAAC)考试复习重点题库500题(含答案)
- WORD版A4横版密封条打印模板(可编辑)
- 住建部《建筑业10项新技术(2017版)》解读培训课件
评论
0/150
提交评论