




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节数列求和考纲传真1.掌握等差、等比数列的前n项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法1公式法(1)等差数列的前n项和公式:Snna1d;(2)等比数列的前n项和公式:Sn2分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解3裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和4错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解5倒序相加法如果一个数列an的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解6并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(10099)(9897)(21)5 050.1一些常见的数列前n项和公式:(1)1234n;(2)13572n1n2;(3)24682nn2n.2常用的裂项公式(1);(2);(3);(4)logaloga(n1)logan.基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)如果数列an为等比数列,且公比不等于1,则其前n项和Sn()(2)当n2时,()(3)求Sna2a23a3nan之和时只要把上式等号两边同时乘以a即可根据错位相减法求得()(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21sin22sin23sin288sin28944.5()答案(1)(2)(3)(4)2(教材改编)数列an的前n项和为Sn,若an,则S5等于()A1BCDBan,S5a1a2a51.3若Sn123456(1)n1n,则S50_.25S50(12)(34)(4950)25.4数列1,3,5,7,(2n1),的前n项和Sn的值等于_n21Sn135(2n1)n2n21.5321422523(n2)2n_.4设S345(n2),则S345(n2).两式相减得S3.S334.分组转化求和【例1】(2019黄山模拟)已知数列an的前n项和Sn,nN*.(1)求数列an的通项公式;(2)设bn2an(1)nan,求数列bn的前2n项和解(1)当n1时,a1S11;当n2时,anSnSn1n.a1也满足ann,故数列an的通项公式为ann.(2)由(1)知ann,故bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.拓展探究在本例(2)中,如何求数列bn的前n项和Tn.解由本例(1)知bn2n(1)nn.当n为偶数时,Tn(21222n)1234(n1)n2n12;当n为奇数时,Tn(21222n)1234(n2)(n1)n2n12n2n1.所以Tn规律方法分组转化法求和的常见类型(1)若anbncn,且bn,cn为等差或等比数列,可采用分组求和法求an的前n项和;(2)通项公式为an的数列,其中数列bn,cn是等比数列或等差数列,可采用分组转化法求和 等差数列an的前n项和为Sn,数列bn是等比数列,满足a13,b11,b2S210,a52b2a3.(1)求数列an和bn的通项公式;(2)令cn设数列cn的前n项和为Tn,求T2n.解(1)设数列an的公差为d,数列bn的公比为q,由得解得an32(n1)2n1,bn2n1.(2)由a13,an2n1,得Snn(n2),则cn即cnT2n(c1c3c2n1)(c2c4c2n)(22322n1)1(4n1)错位相减法求和【例2】(2017天津高考)已知an为等差数列,前n项和为Sn(nN*),bn是首项为2的等比数列,且公比大于0,b2b312,b3a42a1,S1111b4.(1)求an和bn的通项公式;(2)求数列a2nb2n1的前n项和(nN*)解(1)设等差数列an的公差为d,等比数列bn的公比为q.由已知b2b312,得b1(qq2)12,而b12,所以q2q60.又因为q0,解得q2,所以bn2n.由b3a42a1,可得3da18.由S1111b4,可得a15d16.联立,解得a11,d3,由此可得an3n2.所以数列an的通项公式为an3n2,数列bn的通项公式为bn2n.(2)设数列a2nb2n1的前n项和为Tn,由a2n6n2,b2n124n1,得a2nb2n1(3n1)4n,故Tn24542843(3n1)4n,4Tn242543844(3n4)4n(3n1)4n1,得3Tn2434234334n(3n1)4n14(3n1)4n1(3n2)4n18,得Tn4n1.所以数列a2nb2n1的前n项和为4n1.规律方法错位相减法求和时的3个注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式,同时应注意差式中成等比数列的项数(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解 (2019阜阳模拟)设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1a1,b22,qd,S10100.(1)求数列an,bn的通项公式;(2)当d1时,记cn,求数列cn的前n项和Tn.解(1)由题意得即解得或故或(2)由d1,知an2n1,bn2n1,故cn,于是Tn1,Tn.可得Tn23,故Tn6.裂项相消法求和考法1形如an型【例3】(2019济南模拟)已知数列an的各项都为正数,其前n项和为Sn,且满足4Sna2an3对任意的正整数n都成立(1)证明数列an是等差数列,并求其通项公式;(2)设bn,求数列bn的前n项和Tn.解(1)当n1时,4S1a2a13,即a2a130,解得a13或a11(舍去),由4Sna2an3,得当n2时,4Sn1a2an13,两式相减,得4anaa2an2an1,即(anan1)(anan12)0,又an0,anan120,即anan12(n2),数列an是以3为首项,2为公差的等差数列,an32(n1)2n1.(2)由an2n1,得Snnn(n2),bn,Tnb1b2b3bn1bn1.考法2形如an型【例4】已知函数f(x)x的图像过点(4,2),令an,nN*.记数列an的前n项和为Sn,则S2 019_.21由f(4)2,可得42,解得,则f(x)x.an,S2 019a1a2a3a2 019(1)()()()()121.规律方法利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等如:若an是公差d0的等差数列,则,. (2019山西八校联考)在等差数列an中,a24,a1a4a730,其前n项和为Sn.(1)求数列an的通项公式;(2)求数列的前n项和Tn.解(1)设等差数列an的公差为d.法一:由已知可得即解得所以ana1(n1)d1(n1)33n2.法二:由等差数列的性质可得a1a4a73a430,解得a410,所以d3,所以ana2(n2)d4(n2)33n2.(2)由(1)知Sn,所以Sn2n2n,所以.所以Tn.1(2017全国卷)设数列an满足a13a2(2n1)an2n.(1)求an的通项公式;(2)求数列的前n项和解(1)因为a13a2(2n1)an2n,故当n2时,a13a2(2n3)an12(n1),两式相减得(2n1)an2,所以an(n2)又由题设可得a12,满足上式,所以an的通项公式为an.(2)记的前n项和为Sn.由(1)知,则Sn.2(2014全国卷)已知an是递增的等差数列,a2,a4是方程x25x60的根(1)求an的通项公式;(2)求数列的前n项和解(1)方程x25x60的两根为2,3,由题意得a22,a43.设数列an的公差为d,则a4a22d,故d,从而a1.所以an的通项公式为ann1.(2)设的前n项和为Sn.由(1)知,则Sn,Sn.两式相减得Sn.所以Sn2.(三)数列中的高考热点问题命题解读数列在数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要衔接点,从近五年全国卷高考试题来看,本专题的热点题型有:一是等差、等比数列的综合问题;二是数列的通项与求和;三是数列与不等式的交汇,难度中等等差、等比数列的基本运算解决等差、等比数列的综合问题,关键是理清两种数列的项之间的关系,并注重方程思想的应用,等差(比)数列共涉及五个量a1,an,Sn,d(q),n,“知三求二”【例1】(2016天津高考)已知an是等比数列,前n项和为Sn(nN*),且,S663.(1)求an的通项公式;(2)若对任意的nN*,bn是log2an和log2an1的等差中项,求数列(1)nb的前2n项和解(1)设数列an的公比为q.由已知,有,解得q2或q1.又由S6a163,知q1,所以a163,得a11.所以an2n1.(2)由题意,得bn(log2anlog2an1)(log22n1log22n)n,即bn是首项为,公差为1的等差数列设数列(1)nb的前n项和为Tn,则T2n(bb)(bb)(bb)b1b2b3b4b2n1b2n2n2.规律方法1.若an是等差数列,则ban(b0,且b1)是等比数列;若an是正项等比数列,则logban(b0,且b1)是等差数列2对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化 (2019南昌模拟)已知各项均为正数且递减的等比数列an满足:a3,a4,2a5成等差数列,前5项和S531.(1)求数列an的通项公式;(2)若等差数列bn满足b1a41,b2a31,求数列abn的前n项和解(1)由a3,a4,2a5成等差数列得3a4a32a5,设an的公比为q,则2q23q10,解得q或q1(舍去),所以S531,解得a116.所以数列an的通项公式为an16.(2)设等差数列bn的公差为d,由b1a41,b2a31得b11,da3a4422,所以bn2n1,abn,数列abn的前n项和Tn.数列的通项与求和数列的通项与求和是高考的必考题型,求通项属于基本问题,常涉及等差、等比数列的定义、性质、基本量的运算;求和问题关键在于分析通项的结构特征,选择适当的求和方法常考的求和方法有:公式法、错位相减法、裂项相消法、分组求和法等【例2】(本小题满分12分)(2019青岛模拟)已知等差数列an,公差d2,S1,S2,S4成等比数列(1)求an;(2)令bn(1)n,求bn的前n项和Tn.信息提取看到条件中S1,S2,S4成等比数列,想到SS1S4;看到(2)中(1)n想到n为偶数和奇数两种情况规范解答(1)S1,S2,S4成等比数列SS1S4,1分(2a12)2a1,解得a11,3分an12(n1)2n1.4分(2)bn(1)n(1)n(1)n.6分当n为偶数时,bn的前n项和Tn1,8分当n为奇数时,bn的前n项和Tn1.11分故Tn12分易错与防范易错误区:(1)在解答第(2)问时,不会处理bn的表达式;(2)求Tn时,没有对n进行分类讨论,导致解答错误防范措施:(1)对于常见式子的裂项要心中有数,要根据分子的结构特征来确定裂成两项之和还是两项之差(2)出现(1)n求和时,一般要分n为奇数和偶数两种情况通性通法(1)一般求数列的通项往往要构造数列,此时从要证的结论出发,这是很重要的解题信息(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等 已知递增数列an的前n项和Sn满足Sn1an1Sn2an(nN*且n2),且a2a421,a1a510.(1)证明:数列an是等差数列,并求其通项公式;(2)若bn,试求数列bn的前n项和Tn.解(1)由Sn1an1Sn2an可得Sn1Sn2anan1,an1ananan1(n2)不妨令anan1d(n2),易知d0,数列an是首项为a1,公差为d的等差数列又a2a421,a1a510,解得或又d0,故ana1(n1)d2n1.(2)由(1)知,an2n1,bn,Tn1.数列与不等式的交汇问题【例3】(2019哈尔滨模拟)已知数列an满足a13,an12ann1,数列bn满足bnann.(1)证明:数列bn为等比数列;(2)若数列cn满足cn,且数列cn的前n项和为Tn,求证:Tn.证明(1)an12ann1,an1(n1)2(ann),即bn12bn.又b1a112,数列bn是以2为首项、2为公比的等比数列(2)由(1)知,bn22n12n,cn.Tn.规律方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了 (2019贵州模拟)已知数列an满足2an1an2an(nN*),且a3a720,a2a514.(1)求数列an的通项公式;(2)设bn,数列bn的前n项和为Sn,求证:Sn.解(1)由2an1an2an得an为等差数列设等差数列an的公差为d,由a3a720,a2a514,解得d2,a12,数列an的通项公式为an2n.(2)证明:bn ,Sn,故当nN*,Sn.大题增分专训1(2017北京高考)已知等差数列an和等比数列bn满足a1b11,a2a410,b2b4a5.(1)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年标准房屋租赁合同范本下载
- 2025年到达法定退休年龄劳动合同会自动终止吗
- 2025对合同解除中抗辩权的理解
- 新三板股权转让协议
- 有限公司股东协议
- 2025年度店面租赁合同
- 电视片做片头片尾广告合同
- 2025企业并购合同范本
- 小额贷款借款合同
- 足疗店装潢承包协议书范本
- 议小型水库的病害及防患措施
- 预防交叉感染课件
- 上下班交通安全培训课件
- 企业家精神的性别差异基于创业动机视角的研究
- 华为公司跨部门合作
- 2024年中国旅游集团招聘笔试参考题库含答案解析
- 高考地理一轮复习课件哭泣的咸海主题探究中亚
- “拥抱大自然”班会课件
- (完整word版)劳动合同书(电子版)
- 乳腺癌患者PICC导管相关性血栓发生率及相关因素研究
- RoHS 申明格式-个人用
评论
0/150
提交评论