




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学电子教案,专题13:矩形、菱形和正方形,题型预测 特殊平行四边形的中考热点,其题型可能填空、选择和解答题,也可能在压轴题中出现,每份试卷至少2题关于特殊平行四边形的内容,可能简单,也可能复杂,90,相等,相等,垂直,平分,两条对角线,都相等,相等,垂直,平分,四,等于90,C,5,考点1 矩形(考查频率:) 命题方向:(1)矩形有关的计算问题(特别是对角线夹角为60的矩形); (2)矩形的判定,1(2013湖北宜昌)如图,在矩形ABCD中,ABBC,AC,BD相交于点O,则图中等腰三角形的个数是( ) A8 B6 C4 D2 2(2013四川资阳)在矩形ABCD中,对角线ACBD相交于点O,若AOB60,AC10,则AB_,证明:(1)点O为AB的中点,OEOD, 四边形AEBD是平行四边形 ABAC,AD是ABC的角平分线, ADBC 四边形AEBD是矩形 (2)当ABC是等腰直角三角形时,矩形AEBD是正方形. ABC是等腰直角三角形, BAD CADDBA45 BDAD. 由(1)知四边形AEBD是矩形, 四边形AEBD是正方形.,3(2013辽宁铁岭)如图ABC中,ABAC,AD是ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OEOD,连接AE,BE, (1)求证:四边形AEBD是矩形; (2)当ABC满足什么条件时,矩 形AEBD是正方形,并说明理由.,4(2013江苏扬州)如图,在菱形ABCD中,BAD80,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则CDF等于( ) A50 B60 C70 D80 5(2013四川巴中)如图,菱形ABCD的两条对角线相交于O,若AC6,BD4,则菱形ABCD的周长是( ) A24 B16 C4 D2,B,C,B,6,7,考点3 正方形(考查频率:) 命题方向:(1)以填空或者选择的形式考查正方形的判定;(2)正方形的边角关系;(3)正方形的对称性解决的问题 8(2013贵州省六盘水)在平面中,下列命题为真命题的是( ) A四个角相等的四边形是矩形 B对角线垂直的四边形是菱形 C对角线相等的四边形是矩形 D四边相等的四边形是正方形 9(2013山东威海)如图,在ABC中,ACB90,BC的垂直平分线EF交BC于点D,交AB于点E,且BEBF.添加一个条件,仍不能证明四边形BECF为正方形的是( ) ABCAC BCFBF CBDDF DACBF,A,D,C,C,B,C,14(2013山东德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:CECF;AEB75;BEDFEF;S正方形ABCD2 .其中正确的序号是 .(把你认为正确的都填上) 考点4 折叠问题(考查频率:) 命题方向:(1)矩形纸片的折叠问题; 15(2013四川南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE2,DE6,EFB60,则矩形ABCD的面积是( ) A12 B24 C12 D16,D,考点5 最短距离问题(考查频率:) 命题方向:正方形的线段之和最小问题; 16(2013年黔南州)如图,正方形ABCD的边长是2,以正方形ABCD的边AB为边,在正方形内作等边三角形ABE,P为对角线AC上的一点,则PDPE的最小值为_ 17(2013浙江舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AEBF1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当小球P第一次碰到点E时,小球P所经过的路程为 ,2,考点6 规律探究问题(考查频率:) 命题方向:一组特殊平行四边形寻找周长、面积或坐标之间的关系 17(2013浙江衢州)如图,在菱形ABCD中,边长为10,A60.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去.则四边形A2B2C2D2的周长是 ;四边形 A2013B2013C2013D2013的周长是 .,20,例1:(2013湖南娄底)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60角的直角三角板ABC与AFE按如图1所示位置放置,现将RtAEF绕A点按逆时针方向旋转角(090),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P. (1)求证:AMAN; (2)当旋转角30时,四边 形ABPF是什么样的特殊四边形? 并说明理由.,【解题思路】(1)证明AMAN,只需证明其所在的ABM与AFN全等;(2)探究四边形ABPF的形状,须抓住旋转角为30,结合直角三角形中的60、30、90进行思考,不难发现两组对边平行,可证其为平行四边形,再由(1)结论证出其为菱形.,(1)EAC90, NAFEAC90 NAF 又BF,ABAF ABMAFN AMAN (2)四边形ABPF是菱形. 理由:30,EAF90 BAF120 又BF60 BBAF60120180, FBAF60120180 AFBC,ABEF 四边形ABPF是平行四边形 又AMAN 平行四边形ABPF是菱形.,【必知点】1菱形性质的理解: 从这一定义可以看出,菱形是一个特殊的平行四边形,理解菱形的定义,我们可从菱形的共性和特性两个方面来理解 共性:菱形是一个特殊的平行四边形,它具有平行四边形的一切性质,如对边平行且相等,对角相等,邻角互补,对角线互相平分等 菱形的特性主要体现在两个方面:邻边相等;对角线互相垂直 菱形的性质 2菱形判定的理解 如果把一组邻边相等和对角线互相垂直看作菱形的特征,菱形的判断方法可以理解为“平行四边形菱形特征菱形”,也就是说,要证明一个四边形是菱形,可先证明这个四边形是一个平行四边形,然后再添加一个菱形的特征,20,例2:(2013四川宜宾)如图,在ABC 中,ABC90, BD 为AC边的中线,过点 C作 CEBD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FGBD,连结BG、DF若AG13,CF6,则四边形BDFG 的周长为 .,【解题思路】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BDFD,则可判断四边形BGFD是菱形,设GFx,则AF13x,AC2x,在RtACF中利用勾股定理可求出x的值,【必知点】顺次连结任意四边形四边中点所得的四边形一定是平行四边形;顺次连结矩形四边中点所得的四边形一定是菱形;顺次连结菱形四边中点所得的四边形一定是矩形;顺次连结正方形四边中点所得的四边形还是正方形.,例3:(2013四川雅安)如图,正方形 ABCD中,点E、F 分别在 BC、CD上,AEF是等边三角形,连接AC 交 EF于G,下列结论:BEDF,DAF15,AC垂直平分EF,BEDFEF,SCEF2SABE其中正确结论有( ) A2个 B3个 C4个 D5个,【解题思路】通过证明ABEADF即可证明BEDF;通过证明ABEADF可得BAEDAF,即可证出DAF15;由BAEDAF,BACDAC可得:EAGFAG,然后根据等腰三角形三线合一定理可得:AC垂直平分EF;把ADF绕点A逆时针旋转90至ABF的位置,(或延长EB至F,使BFDF,连接AF)通过证明FAE30可得:EFAE,即BEDFEF过点E作ENAF,垂足为N,欲证SCEF2SABE,需证SAFESCEFAFEF,可证ENCG即可.,C,例1:已知菱形ABCD中,对角线AC与BD相交于点O,BAD120,AC4,则该菱形的面积是( ),例2:下列说法中正确的是( ) A一个角是直角,两条对角线相等的四边形是矩形 B一组对边平行且有一个角是直角的四边形是矩形 C对角线互相垂直的平行四边形是矩形 D一个角是直角且对角线互相平分的四边形是矩形,【解题思路】A是不对的,A项提供的条件首先不能证明它是平行四边形;B对于直角梯形也成立,所以是错误的;C所说的是菱形,所以也不对;D正确,对角线互相平分可证明这个四边形是平行四边形,又一个角是直角,根据矩形的定义可知是矩形,【易错点睛】B项很具迷惑性,提供的两个条件都是证明矩形所必须的,只不过少了一个条件,例3:如图,E是正方形ABCD内一点,如果ABE为等边三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 育婴知识培训
- 小学校本课程教学
- 钻石交易合同
- 【名校密卷】人教版数学四年级下册期中测试卷(三)及答案
- 江西省上饶市横峰县2024-2025学年六年级下学期小升初真题数学试卷含解析
- 广西自然资源职业技术学院《康养保健与按摩》2023-2024学年第二学期期末试卷
- 闽江学院《医疗器械研发管理与产品认证》2023-2024学年第二学期期末试卷
- 哈尔滨城市职业学院《动物生物学》2023-2024学年第二学期期末试卷
- 人教PEP版英语五年级下册教学课件Unit 6 Part B 第三课时
- 2025年张家界市小升初全真模拟数学检测卷含解析
- 输水管线工程施工方案
- 建设项目日照分析报告
- 复工复产六个一方案模板
- DB11T 775-2010 透水混凝土路面技术规程
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 2024-2030年中国人绒毛膜促性腺激素(HCG)行业市场发展趋势与前景展望战略分析报告
- 数据治理平台建设方案
- 湖北省荆、荆、襄、宜四地七校考试联盟2025届高三下学期联考历史试题含解析
- 续家谱跋的范文
- 人教小学数学六年级下册整 理和复习《整数》教学课件
- 中国信息消费发展态势报告(2022年)
评论
0/150
提交评论