




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,用待定系数法求二次函数的解析式,二次函数解析式有哪几种表达式?,1 一般式:y=ax2+bx+c,3 顶点式:y=a(x-h)2+k,2 交点式:y=a(x-x1)(x-x2),回味知识点,4 对称式:y=a(x-x1)(x-x2),5距离式:y=a(x-x0)x-(x0+d),解:,设所求的二次函数为 y=ax2+bx+c,由条件得:,a-b+c=10 a+b+c=4 4a+2b+c=7,解方程得:,因此所求二次函数是:,a=2, b=-3, c=5,y=2x2-3x+5,已知一个二次函数的图象过点(1,10)(1,4) (2,7)三点,求这个函数的解析式?,例,1:,解:,设所求的二次函数为 y=a(x1)2-3,由条件得:,已知抛物线的顶点为(1,3),与轴 交点为(0,5)求抛物线的解析式?,点( 0,-5 )在抛物线上,a-3=-5, 得a=-2,故所求的抛物线解析式为; y=2(x1)2-3,即:y=2x2-4x5,例,2,已知二次函数y=ax2+bx+c的最大值是2,图 象顶点在直线y=x+1上,并且图象经过点 (3,-6),求此二次函数的解析式。,解:二次函数的最大值是2 抛物线的顶点纵坐标为2 又抛物线的顶点在直线y=x+1上 当y=2时,x=1。 故顶点坐标为( 1 , 2) 所以可设二次函数的解析式为y=a(x-1)2+2 又图象经过点(3,-6) -6=a (3-1)2+2 得a=-2 故所求二次函数的解析式为:y=-2(x-1)2+2 即: y=-2x2+4x,例,2,解:,设所求的二次函数为 y=a(x1)(x1),由条件得:,点M( 0,1 )在抛物线上,所以:a(0+1)(0-1)=1,得 : a=-1,故所求的抛物线为 y=- (x1)(x-1),即:y=x2+1,试一试,试一试,思考: 1用一般式怎么解? 2用顶点是怎么求解?,有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m现把它的图形放在坐标系里 (如图所示),求抛物线的解析式,设抛物线的解析式为y=ax2bxc,,解:,根据题意可知抛物线经过(0,0) (20,16)和(40,0)三点,可得方程组,通过利用给定的条件 列出a、b、c的三元 一次方程组,求出a、 b、c的值,从而确定 函数的解析式过程较繁杂。,评价,有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m现把它的图形放在坐标系里 (如图所示),求抛物线的解析式,设抛物线为y=a(x-20)216,解:,根据题意可知 点(0,0)在抛物线上,,通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活 。,评价, 所求抛物线解析式为,有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m现把它的图形放在坐标系里 (如图所示),求抛物线的解析式,设抛物线为y=ax(x-40 ),解:,根据题意可知 点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷,评价,说明:若已知二次函数图像上的两点(x1,h)(x2,h)由其坐标特点可知这两点是关于对称轴对称的对称点,这时,可由对称式求函数解析式。,已知抛物线过两点A(1,0)(0,-3)且对称轴是直线x=2,求这个抛物线的解析式。,解:,抛物线的对称轴是直线x=2 抛物线上的点B(0,-3)的对称点是(4,-3 设所求抛物线的解析式是y=a(x-0)(x-4)-3 将A点坐标代入,得:a(1-0)(1-4)-3=0 a=-1 所求抛物线的解析式是y= -x(x-4)-3 即:y= -x2+4x-3,若抛物线y=ax2+bx+c与轴两个交点间距离为2且过点(0,-2),(2,6),求这个抛物线的解析式。,解:设所求抛物线的解析式是y=a(x-x0)x-(x0+d) 将(0,-2),(2,6),d=2代入上式, 得: 解这个方程组,得: 所求抛物线的解析式是y= 2(x+1)x-(-1+2) 即y=2x2-2,若抛物线y=ax2+bx+c与轴两个交点间距离为2且过点(0,-2),(2,6),求这个抛物线的解析式。,解:设所求抛物线的解析式是y=a(x-x0)x-(x0+d),将(0,-2),(2,6),d=2代入上式,,解这个方程组,得:,所求抛物线的解析式是y= 2(x+1)x-(-1+2) 即y=2x2-2,达标测试,1、已知抛物线上的三点,通常设解析式为_,2、已知抛物线顶点坐标(h, k),通常设抛物线解析式为_,3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_,4、已知二次函数图像上的两点(x1,h)(x2,h),通常设解析式为_,5、当已知图象与x轴两交点的距离为d时,通常 设解析式为_,y=ax2+bx+c(a0),y=a(x-h)2+k(a0),y=a(x-x1)(x-x2) (a0),y=a(x-x1)(x-x2) (a0),y=a(x-x0)x-(x0+d) (a0),达标测试,根据下列条件,求二次函数的解析式。,(1)、图象经过(0,0), (1,-2) , (2,3) 三点;,(2)、图象的顶点(2,3), 且经过点(3,1) ;,(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。,一个二次函数,当自变量x= -3时,函数值y=2 当自变量x= -1时,函数值y= -1,当自变量x=1时 ,函数值y= 3,求这个二次函数的解析式? 已知抛物线与X轴的两个交点的横坐标是 、 , 与Y轴交点的纵坐标是3,求这个抛物线的解析式?,4、,5、,达标测试,你学到那些二次函数解析式的求法,求二次函数解析式的一般方法:,已知图象上三点或三对的对应值, 通常选择一般式。,已知图象的顶点坐标对称轴和最值,通常选择顶点式。,已知图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025委托加工合同范本
- 2025年江西省上饶县七中重点达标名校初三6月考前适应性模拟生物试题试卷含解析
- 湖南理工学院《影像诊断学一》2023-2024学年第一学期期末试卷
- 云南省玉溪市2025年高三5月调研物理试题试卷含解析
- 杭州科技职业技术学院《数字录像》2023-2024学年第二学期期末试卷
- 2025届河北省保定市高阳县全国初三冲刺考(四)全国I卷生物试题含解析
- 兰州财经大学《中学音乐课堂教学设计与实践》2023-2024学年第二学期期末试卷
- 2025届甘肃省武威市第十八中学高三下学期教学质量检查数学试题文试题
- 糖尿病护理查房
- 2024年凤凰出版传媒集团秋季招聘笔试参考题库附带答案详解
- 部编三年级语文下册《中国古代寓言》整本书阅读
- 北师大版数学八年级下册全册教案及反思
- 佛教协会会议室管理制度
- 毕业研究生登记表(适用于江苏省)
- 人教版三年级数学下册第一单元位置与方向(一)(双减)作业设计案例
- 24.1.4-圆周角-第1课时说课课件-
- 土石坝设计计算书
- 2024年湖南省长沙市中考英语试卷真题(含答案)
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 临床试验质量管理规范GCP考试试题及完整答案
- 2024年江西省三校生高职英语高考试卷
评论
0/150
提交评论