北师大版数学八年级下册全册教案及反思_第1页
北师大版数学八年级下册全册教案及反思_第2页
北师大版数学八年级下册全册教案及反思_第3页
北师大版数学八年级下册全册教案及反思_第4页
北师大版数学八年级下册全册教案及反思_第5页
已阅读5页,还剩133页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1等腰三角形第1课时全等三角形和等腰三角形的性质教学目标【知识与能力】能够借助数学符号语言利用综合法证明等腰三角形的性质定理.【过程与方法】经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力.【情感态度价值观】启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系.教学重难点【教学重点】探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法.【教学难点】明确推理证明的基本要求,如明确条件和结论,能否用数学语言正确表达等.教学过程一.情景导入,初步认知提前请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS).【教学说明】对以前所学知识进行复习巩固,为本节课的学习作准备.二.思考探究,获取新知1.你能用所学知识证明吗?已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E(已知),∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换).又BC=EF(已知),∴△ABC≌△DEF(ASA).【归纳结论】(1)两角相等且其中一组等角的对边相等的两个三角形全等(AAS);(2)根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等;2.等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?【教学说明】让学生经历这些定理的活动验证和证明过程.具体操作中,可以让学生先独自折纸观察.探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足.【归纳结论】(1)等腰三角形的两个底角相等;(简称为“等边对等角”)(2)等腰三角形顶角的平分线、底边中线、底边上的高三条线重合.三.运用新知,深化理解1.在△ABC中,AB=AC,∠A=50°,求∠B、∠C的度数分析:根据等腰三角形的性质:两底角相等,结合三角形的内角和等于180°来计算.解:在△ABC中,AB=AC,∴∠B=∠C.(等边对等角)∵∠A+∠B+∠C=180°,∠A=50°,∴∠B=∠C=65°.2.已知在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点但不与A重合,且OB=OC,试猜想AE与BC、BD与CD的关系,并说明你的猜想的理由.猜想:AE⊥BC,BD=CD.证明:∵AB=AC,OB=OC,AO=AO,∴△ABO≌△ACO(SSS).∴∠BAO=∠CAO.∴AE为∠BAC的平分线.∴AE⊥BC,BD=CD.3.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.证明:(1)∵在△ADE与△CBF中,AD=CB,AE=CF,DE=BF,∴△ADE≌△CBF(SSS).∴∠D=∠B(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴∠AEO=∠CFO.∵在△AOE与△COF中,∠AEO=∠CFO,∴AE∥CF.4.如图,在△ABC中,AB=AC,AD⊥BC,∠BAC=100°.求∠1、∠3、∠B的度数.解:∵在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠CAD,∴∠1=∠BAC=50°.又∵AD⊥BC,∴∠3=90°.在△ABC中,AB=AC,∴∠B=∠C=40°.【教学说明】在此练习过程中,一定要注意学生的书写格式,必要时教师要在黑板上板书过程.四.师生互动,课堂小结1.学习了等腰三角形的性质,较好地运用其性质解决等腰三角形的问题.2.知道等腰三角形的顶角平分线、底边中线与底边上的高互相重合.五.教学板书六.课后作业布置作业:教材“习题1.1”中第1、3题.七.教学反思在本节课的教学中,要采用小组合作的方式教学,在小组合作的基础上教师通过分析、提问,和学生一起完成以上几个性质定理的证明,注意最好让两至三个学生板演证明,其余学生注意其证明过程的书写是否规范.其后,教师作补充强调.

1.1等腰三角形第2课时等边三角形的性质教学目标【知识与能力】进一步熟悉证明的基本步骤和书写格式,体会证明的必要性【过程与方法】把等腰三角形与等边三角形的性质进行比较,体会等腰三角形和等边三角形的相同之处和不同之处.【情感态度价值观】体验数学活动中的探索与创造,感受数学的严谨性教学重难点【教学重点】等腰三角形、等边三角形的相关性质.【教学难点】等腰三角形、等边三角形的相关性质的应用.教学过程一.情景导入,初步认知在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?【教学说明】通过提问的形式,复习上节课学习的内容,提高学生的学习兴趣.二.思考探究,获取新知探究1.在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明.【归纳结论】等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.如对于“等腰三角形两底角的平分线相等”,的证明方法:证明:∵AB=AC,∴∠ABC=∠ACB.∵BD、CE为∠ABC、∠ACB的平分线,∴∠3=∠4.在△ABD和△ACE中,∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).你能证明其它两个结论吗?探究2.求证:等边三角形三个内角都相等并且每个内角都等于60°.已知:在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°【归纳结论】等边三角形三个内角都相等并且每个内角都等于60°.【教学说明】通过自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出结论.三.运用新知,深化理解1.如图,已知△ABC和△BDE都是等边三角形.求证:AE=CD.证明:∵△ABC和△BDE都是等边三角形.∴∠ABE=∠CBD=60°,AB=CB,BE=BD.在△ABE与△CBD中,AB=CB,∠ABE=∠CBD,BE=BD.∴△ABE≌△CBD(SAS).∴AE=CD.2.如图,△ABC中,AB=AC,E在CA的延长线上,且ED⊥BC于D,求证:AE=AF证明:∵AB=AC,∴∠B=∠C,∵ED⊥BC,∴∠B+∠BFD=90°,∠C+∠E=90°,∵∠BFD=∠EFA,∴∠B+∠EFA=90°,∵∠C+∠E=90°,∠B=∠C,∴∠EFA=∠E,∴AE=AF.3.如图,在△ABC中,∠A=20°,D在AB上,AD=DC,∠ACD∶∠BCD=2∶3,求:∠ABC的度数.解:∵AD=DC,∴∠ACD=∠A=20°,∵∠ACD∶∠BCD=2∶3,∴∠BCD=30°,∴∠ACB=50°,∴∠ABC=110°.【教学说明】在巩固等边三角形的性质的同时,进一步对等腰三角形的性质进行综合应用,在书写过程中掌握综合证明法的基本要求和步骤,规范证明的书写格式四.师生互动,课堂小结掌握证明的基本步骤和书写格式,经历“探索-发现-猜想-证明”的过程,能够用综合法证明等腰三角形的两条腰上的中线(高),两底角的平分线相等,等边三角形三个内角都相等并且每个内角都等于60°.五.教学板书六.课后作业布置作业:教材“习题1.2”中第2、3题.七.教学反思在探究时,对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明.

1.1等腰三角形第3课时等腰三角形的判定及反证法教学目标【知识与能力】探索等腰三角形判定定理,掌握反证法.【过程与方法】理解等腰三角形的判定定理,并会运用其进行简单的证明.【情感态度价值观】培养学生的逆向思维能力.教学重难点【教学重点】理解等腰三角形的判定定理.【教学难点】了解反证法的基本证明思路,并能简单应用教学过程一.情景导入,初步认知问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?【教学说明】通过问题回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进行交流.二.思考探究,获取新知1.我们把等腰三角形的性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?【归纳结论】有两个角相等的三角形是等腰三角形.(简称:等角对等边)2.小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?我们来看一位同学的想法:如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC你能理解他的推理过程吗?再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但∠A+∠B+∠C=180°,“∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.引导学生思考:上面两道题的证法有什么共同的特点呢?【归纳结论】都是先假设命题的结论不成立,然后由此推导出了与已知公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.【教学说明】总结这一证明方法,叙述并阐释反证法的含义,让学生了解.三.运用新知,深化理解1.已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角对等边).2.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长.解:∵BD平分∠CBA,CD平分∠ACB,∴∠MBD=∠DBC,∠NCD=∠BCD.∵MN∥BC,∴∠MDB=∠DBC,∠NDC=∠BCD.∴∠MDB=∠MBD,∠NDC=∠NCD.∴MB=MD,NC=ND.∴C△AMN=AM+AN+MN=AM+AN+MD+ND=AM+AN+MB+NC=(AM+MB)+(AN+NC)=AB+AC=30.3.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,BD=CE.求证:△ABC是等腰三角形.解:∵S△ABC=(AB·CE)=(AC·BD)且BD=CE,∴AB=AC.∴△ABC是等腰三角形.4.如图,在△ABC中,AB=AC,DE∥BC,求证:△ADE是等腰三角形.证明:∵AB=AC,∴∠B=∠C,∵DE∥BC,∴∠B=∠E,∠D=∠C.∴∠D=∠E.∴△ADE是等腰三角形.5.垂直于同一条直线的两条直线平行.证明:假设a、b不平行,那么a、b相交∵a⊥c,b⊥c∴∠1=900,∠2=900∴∠1+∠2=180°而a、b相交,则∠1+∠2≠180°与∠1+∠2=180°相矛盾.∴假设不成立.即:垂直于同一条直线的两条直线平行【教学说明】学生在独立思考的基础上再小组交流,培养学生应用知识解决问题的能力.四.师生互动,课堂小结结合本节课的学习,谈谈等腰三角形性质的判定的区别和联系.五.教学板书六.布置作业举例谈谈用反证法说理的基本思路.布置作业:教材“习题1.3”中第1、2、3题.七、教学反思通过学生的练习,发现学生对等腰三角形的判定定理掌握的较好,而用反证法证明定理的应用掌握不够好,应在这方面多加练习讲解.

1.1等腰三角形第4课时等边三角形的判定教学目标【知识与能力】理解等边三角形的判别条件及其证明,理解含有30°角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题.【过程与方法】经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.【情感态度价值观】在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重难点【教学重点】等边三角形判定定理的发现与证明.【教学难点】了解反证法的基本证明思路,并能简单应用.教学过程一.情景导入,初步认知1.等腰三角形的性质和判定定理是什么?2.等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等边三角形呢?【教学说明】开门见山,引入新课,同时回顾,也为后续探索提供了铺垫.二.思考探究,获取新知1.一个三角形满足什么条件时是等边三角形?一个等腰三角形满足什么条件时是等边三角形?请证明自己的结论,并与同伴交流.【教学说明】学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结.2.用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.【教学说明】学生通过动手操作、观察,找出一些线段存在相等关系.从而得出结论,并加深印象.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【归纳结论】(1)三个角都相等的三角形是等边三角形;(2)有一角是60°的等腰三角形是等边三角形.三.运用新知,深化理解1.见教材P11例32.已知:如图,在Rt△ABC中,∠C=90°,BC=AB.求证:∠BAC=30°证明:延长BC至D,使CD=BC,连接AD.∵∠ACB=90°,∴∠ACD=90°.又∵AC=AC.∴△ACB≌△ACD(SAS).∴AB=AD.∵CD=BC,∴BC=BD.又∵BC=AB,∴AB=BD.∴AB=AD=BD,即△ABD是等边三角形.∴∠B=60°.在Rt△ABC中,∠BAC=30°.3.如图,△ABC是等边三角形,BD=CE,∠1=∠2.求证:△ADE是等边三角形证明:∵△ABC是等边三角形,∴AB=AC.在△ABD与△ACE中,AB=AC,∠1=∠2,BD=CE,∴△ABD≌△ACE(SAS).∴∠EAD=∠BAC=60°,EA=DA.∴△ADE是等边三角形(有一角是60°的等腰三角形是等边三角形).4.如图,在Rt△ABC中,∠B=30°,BD=AD,BD=12,求DC的长.解:在Rt△ABC,∠B=30°∵BD=AD∴∠B=∠BAD=30°∴∠ADC=60°.∵∠C=90°,∴∠DAC=30°.在Rt△ADC中,∠DAC=30°∴CD=AD(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).∵BD=AD=12,∴CD=6.【教学说明】变式训练,巩固新知.注意几何语言.熟练运用直角三角形的有关性质.四.师生互动,课堂小结掌握证明与等边三角形、直角三角形有关的性质定理和判定定理.五.教学板书六.课后作业布置作业:教材“习题1.4”中第3、5题.七.教学反思通过反复练习,学生对本节课的知识掌握的较好,就是几何过程不够严密,有待加强.

1.2直角三角形第1课时勾股定理及其逆定理教学目标【知识与能力】1.掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能运用定理解决与直角三角形有关的问题.2.结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立.【过程与方法】进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维【情感态度价值观】体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.教学重难点【教学重点】掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法.【教学难点】运用定理解决与直角三角形有关的问题教学过程一.情景导入,初步认知我们学过直角三角形的哪些性质和判定方法?与同伴交流.【教学说明】回顾旧知,也为后续探索提供了铺垫.二.思考探究,获取新知探究1:直角三角形的性质和判定直角三角形的两个锐角有什么关系?为什么?如果一个三角形的两个锐角互余,那么这个三角形是什么三角形?为什么?【教学说明】让学生在解决问题的同时,总结直角三角形的一般性质.【归纳结论】①直角三角形的两个锐角互余;②有两个角互余的三角形是直角三角形.探究2:勾股定理及其逆定理.教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗?【教学说明】教师引导学生思考,写出证明过程.【归纳结论】勾股定理:直角三角形两条直角边的平方和等于斜边的平方.勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.探究3:互逆命题和互逆定理.观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.在前面的学习中还有类似的命题吗?【教学说明】教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结.【归纳结论】在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.三.运用新知,深化理解1.说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁内角互补;(3)如果ab=0,那么a=0,b=0.【分析】互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题.解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题.(2)同旁内角互补,两直线平行.原命题与逆命题同为真.(3)如果a=0,b=0,那么ab=0.原命题是假命题,而逆命题是真命题.2.如图,BA⊥DA于A,AD=12,DC=9,CA=15,求证:BA∥DC.证明:在△ADC中,AD=12,DC=9,CA=15.∵AD2+DC2=CA2,∴△ADC是直角三角形.(如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形)∴AD⊥CD,∵BA⊥DA,∴BA∥DC.3.某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?解:当CD⊥AB时,CD最短,造价最低.∵∠ACB=90°,AC=80,BC=60,∴AB=100.设AD=x,则BD=100-x.∵在Rt△ADC与Rt△BDC中,∴CD2=AC2-AD2,CD2=BC2-BD2.∴AC2-AD2=BC2-BD2.∴802-x2=602-(100-x)2.解得:x=64.∴在Rt△ADC中,CD=48.∴最低造价是:48×10=480(元).你还能用其他方法求出CD的长吗?(提示:用面积法)4.已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.求证:a2+b2=c2.证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△ABC≌△BED.∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等).∴四边形ACDE是直角梯形.∴S梯形ACDE=(a+b)(a+b)=(a+b)2.∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,AB=BE.∴S△ABE=c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴(a+b)2=c2+ab+ab,即a2+ab+b2=c2+ab,∴a2+b2=c2四.师生互动,课堂小结这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立,掌握了证明方法,进一步提高了演绎推理的能力.五.教学板书六.课后作业布置作业:教材“习题1.5”中第2、3题.七.教学反思在教学互逆命题和互逆定理时,要强调:互逆命题是相对两个命题而言的,单独一个命题称不上互逆命题;一个命题是真,它的逆命题可能是真,也可能是假.

1.2直角三角形第1课时直角三角形全等的判定教学目标【知识与能力】能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性【过程与方法】进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感【情感态度价值观】进一步掌握推理证明的方法,发展演绎推理能力教学重难点【教学重点】能够证明直角三角形全等的“HL”的判定定理【教学难点】进一步理解证明的必要性.教学过程一.情景导入,初步认知1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形.想一想,怎么画?同学们相互交流.3.有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论.【教学说明】教师顺水推舟,询问能否证明:“斜边和一条直角边分别相等的两个直角三角形全等”,从而引入新课.二.思考探究,获取新知探究:“HL”定理.已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt△ABC≌Rt△A′B′C′.证明:在Rt△ABC中,AC2=AB2一BC2(勾股定理).又∵在Rt△A'B'C'中,A'C'2=A'B'2一B'C'2(勾股定理).∴AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C'(SSS).【归纳结论】斜边和一条直角边对应相等的两个直角三角形全等.(这一定理可以简单地用“斜边、直角边”或“HL”表示.)【教学说明】讲解学生的板演,借此进一步规范学生的书写和表达.分析命题的条件,既然其中一边和它所对的直角对应相等,那么可以把这两个因素总结为直角三角形的斜边对应相等,于是直角三角形有自己的全等判定定理.三.运用新知,深化理解1.见教材P20例题2.填空:如下图,Rt△ABC和Rt△DEF,∠C=∠F=90°.(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是AAS.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是ASA.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是AAS.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是HL.(5)若AC=DF,CB=FE,则Rt△ABC≌Rt△DEF的依据是SAS.3.已知:Rt△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线,且BD=B'D'.求证:Rt△ABC≌Rt△A'B'C'.证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C'(HL定理).∴CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C'中,∵BC=B'C',∠C=∠C'=90°,AC=A'C',∴Rt△ABC≌Rt△A'B'C(SAS).4.如图,已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来,并证明.解:AC=DB.∵AC=DB,AB=BA,∴△ACB≌△BDA(HL)其他条件:CB=DA或四边形ACBD是平行四边形等.证明略.【教学说明】这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.5.如图,在△ABC与△A'B'C'中,CD、C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.求证:△ABC≌△A'B'C'.分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求∠B=∠B',这样就可用AAS;还可寻求BC=B'C',那么就可根据SAS……注意到题目中有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证得Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A'就可行.证明:∵CD、C'D'分别是△ABC、△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°.在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D'(已知),∴Rt△ADC≌Rt△A'D'C'(HL).∠A=∠A',(全等三角形的对应角相等).在△ABC和△A'B'C'中,∠A=∠A'(已证),AC=A'C'(已知),∠ACB=∠A'C'B'(已知),∴△ABC≌△A'B'C'(ASA).【教学说明】通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结.四.师生互动,课堂小结直角三角形的判定方法有五种,注意“HL”仅适用于直角三角形.五.教学板书六.课后作业布置作业:教材“习题1.6”中第3、4、5题.七.教学反思本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现很值得夸赞.

1.3线段的垂直平分线第1课时线段垂直平分线的性质定理及逆定理教学目标【知识与能力】证明线段垂直平分线的性质定理和判定定理【过程与方法】经历探索、猜测、证明的过程,进一步发展学生的推理证明能力,丰富对几何图形的认识【情感态度价值观】通过小组活动,学会与他人合作,并能与他人交流思维的过程和结果.教学重难点【教学重点】运用几何符号语言证明垂直平分线的性质定理及其逆命题.【教学难点】垂直平分线的性质定理在实际问题中的运用.教学过程一.情景导入,初步认知如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?【教学说明】从实际问题入手,提高学生的学习兴趣,使学生明白数学来源于生活,用于生活.二.思考探究,获取新知探究1:垂直平分线的性质.已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.求证:PA=PB.证明:∵MN⊥AB,∴∠PCA=∠PCB=90°∵AC=BC,PC=PC,∴△PCA≌△PCB(SAS).∴PA=PB(全等三角形的对应边相等)【归纳结论】线段垂直平分线上的点到线段两个端点的距离相等探究2:垂直平分线判定你能写出上面这个定理的逆命题吗?它是真命题吗?逆命题就很容易写出来.“如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.引导学生分析证明过程.已知:线段AB,点P是平面内一点且PA=PB.求证:P点在AB的垂直平分线上.证明:过点P作已知线段AB的垂线PC,PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL定理).∴AC=BC,即P点在AB的垂直平分线上【教学说明】此处证明可让学生用多种方法证明.【归纳结论】到一条线段两个端点的距离相等的点在这条线段的垂直平分线上.三.运用新知,深化理解1.已知:如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.求证:直线AO垂直平分线段BC.证明:∵AB=AC,∴点A在线段BC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).同理,点O在线段BC的垂直平分线上.∴直线AO是线段BC的垂直平分线(两点确定一条直线).2.如图,DE为△ABC的AB边的垂直平分线,D为垂足,DE交BC于E,AC=5,BC=8,求△AEC的周长.解:∵DE为△ABC的AB边的垂直平分线,∴AE=BE.∴C△AEC=AC+AE+CE=AC+BE+CE=AC+BC=5+8=13.3.如图,已知:线段CD垂直平分AB,AB平分∠DAC.求证:AD∥BC证明:∵CD是AB的垂直平分线,∴AC=BC,∴∠CAB=∠B,又∵∠CAB=∠DAB,∴∠DAB=∠B,∴AD∥BC.4.如图,已知:AD是△ABC的高,E为AD上一点,且BE=CE.求证:△ABC是等腰三角形.证明:∵BE=CE,AD⊥BC∴AD是BC的垂直平分线,∴AB=AC,∴△ABC是等腰三角形.5.如图,已知:AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=DM.求证:AB=BC.证明:连接AC.∠AMD=180°-75°-45°=60°,且AM=DM,∴△AMD是等边三角形.∴AM=AD.又∵∠MDC=90°-45°=45°,∴∠MDC=∠DMC,∴CD=CM,∴AC为DM的垂直平分线,又∵CD=CM∴CH是∠DCM角平分线∴∠ACM=90°-45°=45°,∴∠BAC=180°-∠B=∠ACM=90°-∠ACM=45°∴AB=BC.【教学说明】学生是第一次证明一条直线是已知线段的垂直平分线,因此老师要引导学生理清证明的思路和方法并给出完整的证明过程.四.师生互动,课堂小结通过这节课的学习你有哪些新的收获?还有哪些困惑?五.教学板书六.课后作业布置作业:教材“习题1.7”中第1、3题.七.教学反思由于本节课是对垂直平分线的性质与判定的综合应用,学生掌握起来难度较大,所以要引导学生理清证明的思路和方法并给出完整的证明过程.

1.3线段的垂直平分线第2课时三角形三边的垂直平分线教学目标【知识与能力】1.能够证明三角形三边垂直平分线交于一点.2.垂直平分线的应用.【过程与方法】经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,提高实践能力和创新意识.【情感态度价值观】体验数学活动中的探索与创造,感受数学的严谨性.教学重难点【教学重点】作已知线段的垂直平分线.【教学难点】垂直平分线的应用.教学过程一.情景导入,初步认知上节课我们学习了线段的垂直平分线,线段的垂直平分线的性质定理、判定定理是什么?【教学说明】回顾旧知,为本节课作准备.二.思考探究,获取新知探究1:请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.【教学说明】让学生自己经历探究的过程,不要直接给出答案或很有指向性的提示.【归纳结论】三角形三边的垂直平分线交于一点,这个点到三个顶点的距离相等.探究2:已知底边及底边上的高,求作等腰三角形.已知:线段a、h求作:△ABC,使AB=AC,BC=a,高AD=h作法:1.作BC=a;2.作线段BC的垂直平分线MN交BC于D点;3.以D为圆心,h长为半径作弧交MN于A点;4.连接AB、AC.∴△ABC就是所求作的三角形(如图所示).探究3:已知直线l和l上一点P,用尺规作l的垂线,使它经过点P.如果点P是直线l外一点,那么怎样用尺规作l的垂线,使它经过点P呢?【教学说明】学生先独立思考完成,然后交流,说出做法并解释作图的理由.三.运用新知,深化理解1.如图,已知:在△ABC中,AB、BC边上的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.证明:P是AB、BC边上的垂直平分线,∴AP=BP,BP=CP,∴AP=CP,∴P点在AC的垂直平分线上.2.如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连接BE.求证:EF=2DE.解:(1)直线l即为所求.(2)证明:在Rt△ABC中,∵∠A=30°,∴∠ABC=60°,又∵l为线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°,∴∠EBC=30°=∠EBA,∠FEC=60°.又∵ED⊥AB,EC⊥BC,∴ED=EC.在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.3.已知:线段a=4cm,h=6cm.求作:作一个△ABC,使AB=AC,且BC=a,高AD=h.作法:略【教学说明】通过练习,巩固所学知识.熟练运用垂直平分线解决问题.四.师生互动,课堂小结本节课通过推理证明了“到三角形三个顶点距离相等的点是三角形三条边的垂直平分线的交点,及三角形三条边的垂直平分线交于一点”的结论,并能根据此结论“已知等腰三角形的底和底边的高,求作等腰三角形”.五.教学板书六.课后作业布置作业:教材“习题1.8”中第1、2题.七.教学反思让学生动手画出符合要求的三角形,训练他们的作图技能,要注意提醒学生正确使用直尺和圆规,规范作图.

1.4角平分线第1课时角平分线的性质定理及逆定理教学目标【知识与能力】会证明角平分线的性质定理及其逆定理【过程与方法】经历探索、猜测、证明的过程,进一步提高学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识.【情感态度价值观】经历探索、猜想、证明使学生掌握研究解决问题的方法.教学重难点【教学重点】正确地表述角平分线性质定理的逆命题及其证明.【教学难点】正确地表述角平分线性质定理的逆命题及其证明.教学过程一.情景导入,初步认知让学生到黑板上画出他们收集到的日常生活中应用角平分线的例子,并分别说出它们的作用.【教学说明】高度评价学生的参与热情和学习成果,激励学生继续努力.尤其是对于其中很有创意的发现,可以以该学生名字命名,以此鼓励.提高学生的积极性.二.思考探究,获取新知探究1:角平分线定理已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵∠1=∠2,OP=OP,∠PDO=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等).【教学说明】请同学们自己尝试着证明上述结论,然后在全班进行交流.教师在教学过程中对有困难的学生要给予指导.【归纳结论】角平分线上的点到这个角两边的距离相等.探究2:角平分线的判定定理.已知:在∠AOB内部有一点P,且PD⊥OA,PE⊥OB,D、E为垂足且PD=PE.求证:点P在∠AOB的角平分线上.证明:∴PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中,OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形对应角相等).∴点P在∠AOB的角平分线上.【归纳结论】在一个角的内部,到角的两边距离相等的点在这个角的角平分线上.三.运用新知,深化理解1.见教材P29例12.如图,已知:∠C=90°,DE是AB的垂直平分线,D为垂足,交BC于E,AB=2AC.求证:CE=DE.证明:连接AE,由于∠C=90°,AB=2AC,∴∠B=30°,∠CAB=60°.∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=30°,∴∠CAE=60°-30°=30°,即AE是∠CAB的角平分线,∴CE=DE.3.如图,已知:E是∠AOB的平分线上的一点,且EC⊥OA,ED⊥OB,垂足分别是C、D.求证:OE垂直平分CD.证明:∵OE是∠AOB的平分线,∴CE=DE,∴Rt△OCE≌Rt△ODE,∴OC=OD,∴O与E都在CD的垂直平分线上,∴OE垂直平分CD.4.如图,已知:在△ABC中,∠BAC的平分线交BC于D,且DE⊥AB,DF⊥AC,垂足分别是E、F.求证:AD是EF的垂直平分线.证明:∵AD是∠BAC的平分线,且DE⊥AB,DF⊥AC,∴DE=DF,∴Rt△ADE≌Rt△ADF,∴AE=AF,∴A与D都在EF的垂直平分线上,∴AD就是EF的垂直平分线.【教学说明】综合利用角平分线的性质和判定直角三角形.垂直平分线的相关性质解决问题.进一步发展学生的推论证明能力.在学生独立完成推理过程的基础上,教师要给出书写示范.四.师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五.教学板书六.课后作业布置作业:教材“习题1.9”中第2、3题.七.教学反思这节课证明了角平分线的性质定理和判定定理,在有角的平分线(或证明是角的平分线)时,过角平分线上的点向两边作垂线段,利用角平分线的判定或性质则使问题迅速得到解决.学生掌握较好.

1.4角平分线第2课时三角形三个内角的平分线教学目标【知识与能力】证明与角的平分线的性质定理和判定定理相关的结论.【过程与方法】经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识.【情感态度价值观】在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重难点【教学重点】三角形三个内角的平分线的性质.【教学难点】角平分线的性质定理和判定定理的综合应用.教学过程一.情景导入,初步认知本节课继续学习有关角平分线的性质和应用,讨论三角形中的角平分线.那么,今天的这节课的研究方法和内容还是和线段的垂直平分线很类似,在学习的过程中,要注意对比线段垂直平分线的研究方法来学习.【教学说明】通过老师的说明,对这节课的大体内容和总的研究方法有了整体的认识和把握,学生可以在一个比较高的起点上来学习本节课的内容.同时,由于老师点明了线段垂直平分线和角平分线之间的相似性,学生初步感受到了数学中的和谐,对数学对象之间的相互联系有了感性的体验.在教师的帮助下提炼出数学中的联系,构建认知结构.二.思考探究,获取新知探究:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.1.证明:三角形的三条角平分线相交于一点已知:如图,设△ABC的角平分线BM、CN相交于点P,求证:P点在∠BAC的角平分线上.证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE(角平分线上的点到这个角的两边的距离相等).同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).∴△ABC的三条角平分线相交于点P.2.证明:这一点到三条边的距离相等如上图,P是△ABC的三条角平分线的交点,求证:PD=PE=PF.由上题的证明可知:PD=PE=PF.【教学说明】让学生把证明落实到笔上,可以培养学生的数学语言表达能力,也可以让学生自己监控自己的思维,培养学生思维的批判性.【归纳结论】三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.三.运用新知,深化理解1.见教材P31例3.2.已知:如图,P点是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C、D.求证:(1)OC=OD;(2)OP是CD的垂直平分线.证明:(1)P点是∠AOB角平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD(角平分线上的点到角两边的距离相等).在Rt△OPC和Rt△OPD中,OP=OP,PC=PD,∴Rt△OPC≌Rt△OPD(HL定理).∴OC=OD(全等三角形对应边相等).(2)又∵OP是∠AOB的角平分线,∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).3.如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?解:我找到四处.除了△ABC三条角平分线交点P外,在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BCA的外角的角平分线的交点P2、P3.因此满足条件共4个,分别是P、P1、P2、P3.4.作图证明:如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,交BC于F,垂足为O,连结DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)解:(1)画角平分线,线段的垂直平分线.(图形略)(2)△BOE≌△BOF≌△DOF(证明过程略)【教学说明】让学生首先自己思考例题的解决方法.分析例题的条件和结论,充分暴露自己的思维过程,让学生“观摩”,在此过程中使学生知道“老师是怎么想到的”.四.师生互动,课堂小结本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.五.教学板书六.课后作业布置作业:教材“习题1.10”中第2、3题.七.教学反思在例题讲解中,要引导学生先从条件出发,想一想由条件可以得到哪些结论?然后从结论出发,思考如果要证明结论成立或计算出结果,都需要什么结果?从前后两个方向思考,渗透分析和综合的解决问题的方法.

2.1不等关系教学目标【知识与能力】1.理解不等式的意义;2.能根据条件列出不等式;3.能用实际生活背景和数学背景解释简单不等式的意义.【过程与方法】通过本节学习,让学生感受到不等关系是客观存在的广泛的数量关系.【情感态度价值观】通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学习兴趣.教学重难点【教学重点】用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值.【教学难点】用不等式或不等式组准确地表示出不等关系.教学过程一.情景导入,初步认知列举出学生身体的高矮、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.那么这些不等关系怎样在数学上表示出来呢?【教学说明】让学生自由地展开联想,教师列举不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入下一步的探究学习,由此引入新课二.思考探究,获取新知探究:1.某中学准备在学校饭厅新添一个通风口,四周用长为xm(x≤5)的装潢条镶嵌(不计接缝),现有两种设计方案.如下图:问题:2.通过测量一棵树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5米的地方作为测量部位,某树栽种时的树围为5㎝,以后树围每年增加约为3㎝,这棵树至少生长多少年其树围才能超过2.4m?(只列关系式)请大家互相讨论后列出关系式.观察由上述问题得到的关系式,它们的共同特点是什么?【教学说明】通过学生自己总结出不等式的概念,培养学生总结归纳的能力.【归纳结论】一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.三.运用新知,深化理解1.在数学表达式:(1)-3<0;(2)3x+5>0;(3)x2-6;(4)x=-2;(5)y≠0;(6)x≥50中,不等式的个数是()A.2B.3C解析:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(5),(6)为不等式,共有4个.故选C.2.某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是()A.t>33B.t≤24C解析:由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间,所以该市气温t(℃)的变化范围是:24≤t≤33.故选D.3.若m是非负数,则用不等式表示正确的是()A.m<0B.m>0C解析:非负数即正数或0,即大于或等于0的数,则m≥0.故选D.4.k的值大于-1且不大于3,则用不等式表示k的取值范围是.(使用形如a≤x≤b的类似式子填空.)答案:-1<k≤3.5.801班班长拿了56元钱去给班内20名优秀学生买奖品,奖品有两种:钢笔和笔记本.已知钢笔每支5元,笔记本每本3元,如果买x支钢笔,则列出关于x的不等式是5x+3(20-x)≤56.【教学说明】对本节知识进行巩固练习,及时反馈.四.师生互动,课堂小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.五.教学板书六.课后作业布置作业:教材“习题2.1”中第1、3题.七.教学反思本节课充分通过学生举例和老师的选例,让学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型.经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力.在教学中,要充分相信学生的潜力,让学生真正成为学习的主体,让学生的思维在数学课堂上尽情地驰骋,老师要做好课堂的引导者、参与者、合作者,与学生平等地进行交流与学习.

2.2不等式的基本性质教学目标【知识与能力】1.经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同.2.掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式.【过程与方法】通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法.【情感态度价值观】通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心.教学重难点【教学重点】理解不等式的三个性质.【教学难点】理解不等式的三个性质.教学过程一.情景导入,初步认知还记得等式的基本性质吗?请用字母表示它.不等式有类似的性质吗?先猜一猜.【教学说明】通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法.二.思考探究,获取新知探究1:不等式的基本性质.用等号或不等号完成下面的填空.如果2<3,那么2+33+3;2+(-5)3+(-5).【归纳结论】不等式的基本性质1:如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变.【归纳结论】不等式的基本性质2:如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变【教学说明】以问题的形式引导学生从对比中自己先猜想不等式的基本性质,再通过具体数值验算性质,最后自己总结归纳出性质并能用字母表示出来.因此在整个教学过程中,学生均处于主导地位,教师只是从旁指引.这时,学生对于由自己推导出性质应该感到非常兴奋.三.运用新知,深化理解1.见教材P41例题2.将下列不等式化为x﹥a或x﹤a的形式.(1)x-7>26(2)3x<2x+1解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得x-7+7﹥26+7,所以x﹥33.(2)为了使不等式3x<2x+1中不等号的一边变为x,根据不等式的性质1,不等式两边都减去2x,不等号的方向不变,得3x-2x﹤2x+1-2x,所以x﹤1.3.若x>y,则下列式子错误的是().A.x-3>y-3B.-3x>-3yC.x+3>y+3D.解:A.不等式两边都减3,不等号的方向不变,正确;B.乘以一个负数,不等号的方向改变,错误;C.不等式两边都加3,不等号的方向不变,正确;D.不等式两边都除以一个正数,不等号的方向不变,正确.故选B.6.已知实数a、b、c在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc>ab(2)ac>ab(3)c-b<a-b(4)c+b>a+b(5)a-c>b-c(6)a+c<b+c解析:由数轴可知:c<b<a,a>0,b<0,c<0.因为c<a,两边都乘以b,注意b是一个负数,所以得bc>ab,故(1)正确;因为c<b,两边都乘以a(a为正数),得ac<ba,故(2)不正确;因为c<a,两边都减b,得c-b<a-b,所以(3)正确,因为c<a,两边都加b,得c+b<a+b,所以(4)不正确;因为a>b,两边都减去c,得a-c>b-c,所以(5)正确;因为a>b,两边都加上c,得a+c>b+c,所以(6)不正确【教学说明】在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解.随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据.准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的.四.师生互动,课堂小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空五.教学板书六.课后作业布置作业:教材"习题2.2"中第1、3题.七.教学反思本节课主要采用了类比-实验-交流的教学方法,使用了多媒体教学手段,使得学生参与课堂的积极性很高,课堂气氛非常活跃,大多数学生掌握了不等式的三条基本性质并能简单运用.但这节课,在探索新知上花的时间较多,以至于学生的练习时间太短了,以后我在安排教学内容时应注意教学时间的把握,充分利用好课堂时间.

2.3不等式的解集教学目标【知识与能力】1.能根据具体情境理解不等式的解与解集的意义.2.能在数轴上表示不等式的解集.【过程与方法】培养学生从现实情况中探索、发现并提出简单的数学问题的能力.【情感态度价值观】通过从实际问题中建立数学模型、探索求不等式的解集的过程,让学生认识数学与人类生活的密切联系,体验数学的探究性和创造性.教学重难点【教学重点】理解不等式的解与解集的概念.【教学难点】不等式解集的数轴表示.教学过程一.情景导入,初步认知1.我们已学习了不等式的基本性质,那么不等式的基本性质有哪些?它与等式的性质有何异同点?2.方程的解的定义是什么?3.类似地,你认为什么是不等式的解?这节课我们来研究不等式的解的相关知识.【教学说明】让学生回顾前一节及相关内容,为本节课教学做好知识准备,起到承上启下的作用.二.思考探究,获取新知探究1:不等式的解、解集的概念1.x=-2、1、5、6、8能使不等式x>5成立么?2.你还能说出几个使不等式x>5成立的x值吗?你认为不等式x>5的解有几个?它们有什么特点?3.你能说出使不等式x2≤0成立的x值吗?【归纳结论】能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集,求不等式的解集的过程叫做解不等式.【教学说明】通过对以上问题情境的探究,引导学生认识到:不等式的解一般有无数个,但有时只有有限个,有时无解.在此基础上,给出不等式的解集和解不等式的定义.探究2:在数轴上表示不等式的解集.1.讨论:既然不等式的解集在通常情形下有很多个符合条件的解,那么我们能否用一种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解.2.请同学们用自己的方式将不等式x>3的解集和不等式x+1≤-1的解集x≤-2分别表示在数轴上,并与同伴进行交流.【教学说明】学习在数轴上表示不等式解集时,先鼓励学生用自己的方法表示,以发展他们的创新意识.【归纳结论】提醒学生注意数轴上表示不等式的解集的正确方法:(1)指示线的方向,“>”向右,“<”向左.(2)有“=”用实心点,没有“=”用空心圈.三.运用新知,深化理解1.判断正误:(1)不等式x-1>0有无数个解;(2)不等式2x-3≤0的解集为x≥.答案:(1)对;(2)错.2.填空:(1)方程2x=4的解有()个,不等式2x<4的解有()个;(2)不等式5x≥-10的解集是();(3)不等式x≥-3的负整数解是();(4)不等式x-1<2的正整数解是().答案:(1)1无数;(2)x≥-2;(3)-3、-2、-1;(4)1、2.3.将数轴上x的范围用不等式表示:(5)x应取大于-2且小于1的值或x等于-2.此不等式的解集在数轴上的表示为:答案:(1)x>2;(2)x≤3;(3)x≥-1;(4)x<1;(5)-2≤x<1.4.下列说法中,错误的是()A.不等式x<2的正整数解有一个B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个解析:A.不等式x<2的正整数解只有1,故本选项正确,不符合题意;B.2x-1<0的解集为x<12,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C.不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D.不等式x<10的整数解有无数个,故本选项正确,不符合题意.故选C.【教学说明】通过自主练习,巩固本节课所学知识.教师可适当引导学生.四.师生互动,课堂小结1.什么是不等式的解,不等式的解集,解不等式;2.会探索简单不等式的解集,并把解集表示在数轴上;3.用数轴表示解集时的注意事项.五.教学板书六.课后作业布置作业:教材“习题2.3”中第2、3题.七.教学反思在教学中要充分体现学生的积极参与和合作交流.让学生掌握采用类比方程的解得到不等式的解的方法,进一步深入了解问题,积极参与交流探索,并通过老师的引导,理解不等式的解和解集的意义.在学生自主练习、小组展示和交流质疑的过程中,老师能及时发现学生的不同见解,并对学生的思维误区及时进行指导纠正.

2.4一元一次不等式第1课时一元一次不等式及其解法教学目标【知识与能力】会解简单的一元一次不等式,并能在数轴上表示其解集.【过程与方法】让学生经历一元一次不等式的形成过程,通过类比理解一元一次不等式的解法.【情感态度价值观】通过对一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣.教学重难点【教学重点】掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来.【教学难点】一元一次不等式的解法.教学过程一.情景导入,初步认知复习提问:(1)不等式的三条基本性质是什么?(2)运用不等式基本性质把下列不等式化成x>a或x<a的形式.①x-4<6②2x>x-5③x-4<6④x≥x(3)什么叫一元一次方程?解一元一次方程的步骤是什么?【教学说明】通过问题,让学生回顾一元一次方程的概念和解一元一次方程的步骤,以及不等式的意义,不等式的基本性质和不等式的解集,为后面归纳一元一次不等式的概念及解法提供条件.同时让学生体会等式与不等式之间所蕴含的特殊与一般的关系.二.思考探究,获取新知探究1:一元一次不等式的概念观察下列不等式:这些不等式有哪些共同点?【归纳结论】左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式,叫做一元一次不等式.探究2:解一元一次不等式.解不等式3-x<2x+6,并把它的解集表示在数轴上.提出问题:1.你能利用不等式的基本性质解决吗?试一试.2.在解不等式的过程中是否有与解一元一次方程类似的步骤?能否归纳解一元一次不等式的基本步骤?3.在解一元一次不等式的步骤中,应注意什么?【归纳结论】1.解一元一次不等式大致要分五个步骤进行:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化1.2.在数轴上表示不等式的解集时,要注意不等号以及端点的情况.【教学说明】学生通过小组合作学习的方式探索用不等式的基本性质去求解并相互交流做法,通过观察、探讨、交流、归纳一元一次不等式的解法.三.运用新知,深化理解1.解不等式,并把它的解集表示在数轴上.解:去分母,得3(x-2)≥2(7-x),去括号,得3x-6≥14-2x,移项.合并同类项,得5x≥20,两边都除以5,得x≥4.这个不等式的解集在数轴上表示如下:2.解不等式10-4(x-3)≤2(x-1),并把它的解集在数轴上表示出来.解:去括号,得10-4x+12≤2x-2,移项,得10+2+12≤2x+4x.合并同类项,得24≤6x系数化为1,得4≤x,即x≥4.在数轴上表示不等式解集如图:3.解关于x的不等式:k(x+3)>x+4;解:去括号,得kx+3k>x+4;若k-1=0,即k=1时,0>1不成立,∴不等式无解.若k-1>0,即k>1时,.若k-1<0,即k<1时,.4.y取何正整数时,代数式2(y-1)的值不大于10-4(y-3)的值.解:根据题意列出不等式:2(y-1)≤10-4(y-3)解这个不等式,得y≤4,解集在方程y≤4中的正整数解是:1,2,3,4.【教学说明】学生先独立演算,再小组讨论,教师通过巡视及时发现问题并解决问题,强化学生对一元一次不等式解法的过程与步骤的理解.四.师生互动,课堂小结(1)通过本节课的学习,你学到了哪些知识?(什么是一元一次不等式以及一元一次不等式的解法.)(2)你觉得在一元一次不等式的解题步骤中,应该注意些什么问题?(如果乘数或除数是负数,不等号的方向要改变.)五.教学板书六.课后作业布置作业:教材“习题2.3”中第2、3题.七.教学反思对于一元一次不等式解法的教学中采用小组合作学习的方法,老师应该首先鼓励学生运用不等式的性质和不等式的解集自主尝试求解,再组织小组交流解答过程,并进行适当的归纳总结、类比解方程的方法,并比较其异同.在教学过程中老师不能急于求成,不要包办学生的活动,给学生充分的时间思考、交流,适时给予恰当的引导,再通过范例与学生共同经历解一元一次不等式的过程.

2.4一元一次不等式第2课时一元一次不等式的应用教学目标【知识与能力】1.进一步巩固求一元一次不等式的解集;2.能利用一元一次不等式解决一些简单的实际问题.【过程与方法】通过学生独立思考,培养学生用数学知识解决实际问题的能力.【情感态度价值观】通过学生自主探索,培养学生学数学的好奇心与求知欲,他们能积极参与数学学习活动,锻炼克服困难的意志,增强自信心.教学重难点【教学重点】1.求一元一次不等式的解集;2.用数学知识去解决简单的实际问题.【教学难点】能结合具体问题发现并提出数学问题.教学过程一.情景导入,初步认知解下列不等式,并把它们的解集分别表示在数轴上.【教学说明】通过对这两个一元一次不等式的求解,让学生回顾解一元一次不等式的基本步骤以及在数轴上表示解集的方法.二.思考探究,获取新知探究:利用一元一次不等式解决简单的实际问题一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?分析:解不等式应用题也和解方程应用题类似,我们先回忆一下列方程解应用题应如何进行.先审题,弄清题中的等量关系;设未知数,用未知数表示有关的代数式;列出方程,解方程;最后写出答案.总的题量有25题.答对一题得4分,答错或不答扣1分,最后得分在85分或85分以上,所以关系式应为:4×答对题数-1×答错题数≥85请大家自己写步骤.解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22,23,24,25道题.大家依据列方程解应用题的过程,对照上面解不等式应用题的步骤,总结一下两者的不同,并给出解一元一次不等式应用题的一般步骤,请互相交流.【归纳结论】第一步:审题,找不等关系;第二步:设未知数,用未知数表示有关代数式;第三步:列不等式;第四步:解不等式;第五步:根据实际情况写出答案.【教学说明】通过学生之间的合作、交流,让学生体会不等式在解决实际问题时的作用,增加了学生间的交流、合作,提高了学生教学语言的表达能力.三.运用新知,深化理解1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折答案:B.2.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则至多只能安排人种甲种蔬菜.答案:4.3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可以买几支笔?解:设她还可以买n支笔,根据题意得3n+2.2×2≤21解这个不等式,得n≤16.6/3因为在这一问题中n只能取正整数,所以,小颖还可以买1支,2支,3支,4支或5支笔.4.某市的一种出租车起步价为7元,起步路程为3km(即开始行驶路程在3km以内都需付7元),超过3km,每增加1km加价2.4元(不足1km以1km计价),现在某人乘出租车从甲地到乙地,支付车费14.2元,问从甲地到乙地的路程最多是多少?解:设从甲到乙地的路程为x公里,则由题意,可得7+2.4(x-3)≤14.2,解得x≤6.所以从甲到乙地的路程为乙地的路程最多是6km.【教学说明】通过学生独立对随堂练习的解答,及时发现问题、解决问题,让学生熟练解一元一次不等式,并能利用不等式解决一些实际问题.四.师生互动,课堂小结通过本节课的学习,你学到了哪些知识?五.教学板书六.课后作业布置作业:教材“习题2.5”中第2、3、4题.七.教学反思本节课的重点是利用一元一次不等式解决实际问题,让学生体会数学与生活的紧密联系.教学内容对于优等生来说并不难,但对于中等生和学困生来说难度就较大.这节课运用分步实施的方法,每一步先让学生尝试解决,然后师生探究方法,再进行巩固练习,这样处理,对于中等生和学困生掌握不等式的运用是十分有利的,对于落实“面向全体学生”这一理念是十分必要的.

2.5一元一次不等式与一次函数教学目标【知识与能力】理解一次函数与一元一次不等式的关系,并解决实际问题.【过程与方法】经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.【情感态度价值观】培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.教学重难点【教学重点】一次函数与一元一次不等式的关系.【教学难点】解决实际问题.教学过程一.情景导入,初步认知上节课我们类比一元一次方程的解法,根据不等式的基本性质,学习了一元一次不等式的解法,本节课我们来学习一元一次不等式其它解法.【教学说明】以“旧”引“新”,由原有的知识为基础,利用初中生的好奇心理,激发学生探究新知的兴趣.二.思考探究,获取新知探究1:一元一次不等式与一次函数的关系作出函数y=2x-5的图象,观察图象回答下列问题.(1)x取哪些值时,2x-5=0?(2)x取哪些值时,2x-5>0?(3)x取哪些值时,2x-5<0?(4)x取哪些值时,2x-5>3?想一想:如果y=-2x-5,那么当x取何值时,y>0?【教学说明】通过作函数图象,观察函数图象,进一步理解一次函数的有关知识,让学生从整体上感受利用一次函数图像可以帮助解决一元一次方程、一元一次不等式的问题.【归纳结论】由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论