已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学与生活,逻 辑,两个人从烟囱爬出来,一个人满脸烟灰,一个人干干净净,他们相视一会儿以后,你猜哪个人去洗澡了?为什么?,烟囱,笨人执竿要进屋, 无奈门框挡住竹, 横多四尺竖多二, 没法急得放声哭。 有个邻居聪明者, 教他斜竿对两角。 笨人依言试一试, 不多不少刚抵足, 谁人算出我佩服。,生活中的趣味数学之执竿进屋,勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”) 边长平方和等于斜边(即“弦”)边长的平方。 也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c 。 勾股定理现发现约有400种证明方法, 是数学定理中证明方法最多的定理之一。 勾股数组成a+b=c的正整数组(a,b,c)。(3,4,5)就是勾股数。,勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a+b=c这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c。”常见勾股数有(3,4,5)(5,12,13) (6,8,10)。,远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。 在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。,如图(左)为小张家楼梯,测得楼梯长为5米,高3米,计划在楼梯表面铺地毯如图(右),则地毯至少多长?,169,25,B,?,如图,已知大正方形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 队长工作计划模板5篇
- 废旧轮胎低温真空裂解无害化及资源化节能与环保示范项目可行性研究报告
- 产5万吨弹簧扁钢技改项目可行性研究报告
- 销售经理个人工作计划范文7篇
- 取水趸船建造合同范本
- 软件服务合同培训条款
- 散养牛场请人看管双方协议范文
- 高中数学教师学年度总结5篇
- 商务合同条款案例
- 大三学生学习计划范文(9篇)
- 三年级下册口算天天100题(A4打印版)
- 三基选择题(东南大学出版社)
- 2021年大唐集团招聘笔试试题及答案
- DBJ53/T-39-2020 云南省民用建筑节能设计标准
- 2022版义务教育数学课程标准解读课件PPT模板
- 实验五 PCR扩增课件
- 马拉松运动医疗支援培训课件
- 中医药宣传手册
- 不良资产处置尽职指引
- 人教部编版七年级历史上册第19课 北魏政治和北方民族大交融课件(23张PPT)
- 机械设备定期检查维修保养使用台账
评论
0/150
提交评论