已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,复变函数论多媒体教学课件,Department of Mathematics,第二章 解析函数,第一节 解析函数的概念 与C-R 条件,第二节 初等解析函数,第三节 初等多值函数,Department of Mathematics,第一节、解析函数的概念与 柯西黎曼条件,一、复变函数的导数与微分,1.定义2.1,在定义中应注意:,2.微分,注:可导与可微等价.,例1,解,二.解析函数的概念及其简单性质,1.定义2.2,注1,注2,区域D内的解析函数也称为D内的全纯函数或正则函数,根据定义可知:,函数在区域内解析与在区域内可导是等价的.,2. 奇点的定义,但是,函数在一点处解析与在一点处可导是不等价的概念. 即函数在一点处可导, 不一定在该点处解析.,函数在一点处解析比在该点处可导的要求要高得多.,定义2.3,注1、一个函数在一个点可导,显然它在这个点连续;但反之不成立. 注2、解析性与可导性的关系:在一个点的可导性为一个局部概念,而解析性是一个整体概念;,注3、函数在一个点解析,是指在这个点的某个邻域内可导,因此在这个点可导,反之,在一个点的可导不能得到在这个点解析; 注4、闭区域上的解析函数是指在包含这个区域的一个更大的区域上解析;,3.求导法则,反函数求导法则,复合函数求导法则,利用这些法则,我们可以计算常数、多项式以及有理函数的导数,其结果和数学分析的结论基本相同。,注,例2,解,在全平面解析,二、Cauchy-Riemann方程,1.可微的必要条件,证明,则,存在,存在,存在,注:定理条件是必要而非充分的,证,例3,2.可微的充要条件,证,(1) 必要性.,(2) 充分性.,由于,证毕,3.可微的充分条件,4.解析的充要条件,5.解析的充分条件,注:柯西-黎曼方程是复变函数在一点可微的主要条件,例4,解,例5,解,四个偏导数均连续,指数函数,例6,证明,例7,解,例8,证,参照以上例题可进一步证明:,例9,证,根据隐函数求导法则,根据柯西黎曼方程得,思考题,思考题答案,作业,P90习
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 窗帘、墙布施工合同
- 2024至2030年感应式IC卡读卡器项目投资价值分析报告
- 2024年石棉瓦项目可行性研究报告
- 2024合同终止协议书范本
- 2024至2030年中国桑皮纸遮蔽胶带数据监测研究报告
- 2024广告物料合同范文
- 2024【年度采购合同范本版】合同协议书
- 2024商业街广场合同样本
- 2024广告印刷合同的格式
- 2024工厂公司等单位设备操作功能辅助业务外包合同
- 人教版七年级上册生物第一单元《生物的特征》说课稿(共4页)
- 公司内部招标工作流程
- 实验室质量监控
- 工程款欠条(模板)
- 应用型本科高校基础课程体系教学改革之设计速写课程改革探讨
- 福建省高速公路招标做法讲义
- 地震资料解释_第七章
- 养殖场动物防疫条件自查表
- 钱塘江河口概况
- 全国中学生物理竞赛集锦(电磁学)
- 【doc】气田单井经济极限产量研究
评论
0/150
提交评论