经典方程的建立和定解条件课件_第1页
经典方程的建立和定解条件课件_第2页
经典方程的建立和定解条件课件_第3页
经典方程的建立和定解条件课件_第4页
经典方程的建立和定解条件课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,在讨论数学物理方程的解法以前,我们首先要弄清楚数学物理方程所研究的问题应该怎样提,为此,我们从两方面来讨论,一方面要将一个具体的物理、力学等自然科学问题化为数学问题,即建立描述某种物理过程的微分方程数学物理方程,称此方程为泛定方程;另一方面要把一个特定的物理现象本身所具有的具体条件用数学形式表达出来,即列出相应的初始条件和边界条件,两者合称为定解条件.定解条件提出具体的物理问题,泛定方程提供解决问题的依据,作为一个整体称之为定解问题.,第3章 经典方程的建立和定解条件,经典方程的导出步骤: 确定出所要研究的是哪一个物理量,2.用数学的“微元法”从所研究的系统中分割出一小部分,再根据相应的物理(力学)规律分析邻近部分和这个小部分间的作用(抓住主要作用,略去次要因素,即高等数学中的抓主部,略去高阶无穷小),这种相互作用在一个短的时间间隔是如何影响物理量,3.把这种关系用数学算式(方程)表达出来,经化简整理就是所需求的数学物理方程.,31 经典方程的建立,1. 弦的微小横振动,考察一根长为,且两端固定、水平拉紧的弦,讨论如何将这一物理问题转化为数学上的定解问题要确定弦的运动方程,需要明确:,确定弦的运动方程,(2)被研究的物理量遵循哪些物理定理?牛顿第二定律.,(3)按物理定理写出数学物理方程(即建立泛定方程),要研究的物理量是什么? 弦沿垂直方向的位移,注意: 物理问题涉及的因素较多,往往还需要引入适当假设才能使方程简化 数学物理方程必须反映弦上任一位置上的垂直位移所遵循的普遍规律,所以考察点不能取在端点上,但可以取除端点之外的任何位置作为考察点,(9.1.1),(9.1.2),即为,(9.1.7),上式即为弦作微小横振动的运动方程,简称为弦振动方程,其中,讨论:,(1)若设弦的重量远小于弦的张力,则上式(9.1.7)右端的重力加速度项可以忽略由此得到下列齐次偏微分方程:,(9.1.8),称式(9.1.8)为弦的自由振动方程,(9.1.9),处单位质量上的横向外力,式(9.1.9)称为弦的受迫振动方程.,9.2 数学建模热传导方程类型的建立,9.2.1数学物理方程热传导类型方程的建立,1.热传导方程,推导固体的热传导方程时, 需要利用能量守恒定律和关于热传导的傅里叶定律:,热传导的傅里叶定律:,(9.2.1),图9.8,取直角坐标系Oxyz, 如图9.8,表示t时刻物体内任一点(x,y,z)处的温度,在dt 时间内通过ABCD面流入的热量为,则根据能量守恒定律得热平衡方程,或写成,(9.2.2),2. 扩散方程,(9.2.3),其中,将一维推广到三维,即得到,(9.2.4),上述方程与一维热传导方程具有完全类似的形式,.,若外界有扩散源,且扩散源的强度为,这时,扩散方程应为,(9.2.5),从上面的推导可知,热传导和扩散这两种不同的物理现象, 但可以用同一类方程来描述.,9.3 数学建模稳定场方程类型的建立,9.3.1 数学建模稳定场方程类型的建立,1 静电场的电势方程,直角坐标系中泊松方程为,(9.3.1),(9.3.2),称这个方程为拉普拉斯方程.,2. 稳定温度分布,导热物体内的热源分布和边界条件不随时间变化,故热传导方程中对时间的偏微分项为零,从而热传导方程 (9.2.1),(9.2.2) 即为下列拉普拉斯方程和泊松方程.,(9.3.3),(9.3.4),9.1.2 波动方程的定解条件,定解条件:初始条件和边界条件,1.初始条件,波动方程的初始条件通常是,(9.1.22),,如图9.5所示,然后放手任其振动,试写出初始条件。,【解】 初始时刻就是放手的那一瞬间, 按题意初始速度为零,即有,初始位移如图所示,2.边界条件,常见的线性边界条件分为三类:,第一类边界条件,直接规定了所研究的物理量在边界上的数值,第二类边界条件,规定了所研究的物理量在边界外法线方向上方向导数的数值,(9.1.23),(9.1.24),第三类边界条件,规定了所研究的物理量及其外法向导数的线性组合在边界上的数值,(9.1.25),9.2.2 热传导(或扩散)方程的定解条件,1 初始条件,热传导方程的初始条件一般为,(9.2.6),2 边界条件,(9.2.7),直接给出函数u 在边界上的数值,所以是第一类边界条件.,2. 第二类,设单位时间内通过边界上单位面积流入的热量为,.,如图9.10所示.,图9.10,所以当,由热平衡方程给出:,(9.2.8),3. 第三类,根据牛顿冷却定律: 单位时间从周围介质传到边界上单位面积 的热量与表面和外界的温度差成正比, 即,为常数,与推导条件(9.2.11)相似,此时可得边界条件,(9.2.9),其中,9.3.2 泊松方程和拉普拉斯方程的定解条件,泊松方程和拉普拉斯方程的定解条件不包含初始条件, 而只有边界条件.,边界条件分为三类:,2、在边界上给定未知函数导数的值,即为第二类边界条件,3、在边界上给定未知函数和它的导数的某种线性组合, 即第三类边界条件.,第一、二、三类边界条件可以统一地写成,(9.3.5),为常数,它们不同时为零,9.4 数学物理定解理论,9.4.1 定解条件和定解问题的提法,边界条件的类型,除了前面我们介绍的第一、第二、第三类边界条件之外,还有其它边界条件,如自然边界条件,衔接条件, 周期性条件和无边界条件,9.4.2 数学物理定解问题的适定性,(1) 解的存在性,看所归结出来的定解问题是否有解;,(2) 解的唯一性,看是否只有一个解,(3) 解的稳定性,当定解问题的自由项或定解条件有微小变化时, 解是否相应地只有微小的变化量,定解问题解的存在性、唯一性和稳定性统称为定解问题的适定性.,9.4.3 数学物理定解问题的求解方法,1.行波法; 2.分离变量法; 3.幂级数解法; 4.格林函数法; 5.积分变换法; 6.保角变换法; 7.变分法; 8.计算机仿真解法; 9.数值计算法,9.5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论