已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 常用计量经济模型,第一节 时间序列的外推、平滑和季节调整,一、时间序列的成分 趋势成分(Trend)、循环成分(Cyclical)、季节成分(Season)、不规则成分(Irregular),二、简单外推模型,由时间序列过去行为进行预测的简单模型,(适用于yt有一个长期增长的模式),1、线性趋势模型 yt =c1+ c2 t,2、指数增长趋势模型,两边取对数,3、自回归趋势模型,4、二次曲线趋势模型,对数自回归趋势模型,美国商业部:1986年1月至1995年12月百货公司的月零售额(亿元),例1 百货公司销售预测,三、平滑技术,(目的是“消除”时间序列中的不规则成分引起的随机波动,适用于稳定的时间序列),1、移动平均模型,移动平均数=最近n期数据之和/n,例如3期移动平均,中心移动平均,3期中心移动平均,2、指数加权移动平均模型,即,(EWMAExponentially Weighted Moving Averages),越小,时间序列的平滑程度越高。,例2 美国月度新建住房数(1986年1月至1995年10月),四、季节调整,(目的是“消除”时间序列中的季节成分引起的随机波动),Census (美国普查局开发的标准方法),移动平均比值法 (Ratio to Moving Averages),Ratio to Moving AveragesMultiplicative,第一步 用中心移动平均平滑序列yt,对于月度资料,对于季度资料,此时可大致认为 已无季节和不规则波动,可看作 的估计,第二步 估计SI,令,zt即为SI的估计,第三步 消除不规则变动,得到S的估计 对SI中同一季节的数据进行平均,从而消除掉I。,例如,对于月度数据,假定 y1是1月份的数据, y2是1月份的数据, y3是1月份的数据, y4是1月份的数据,总共4年数据。 则,第四步 调整S的估计,使其连乘积等于1或和等于12。,第二节 随机时间序列模型,基本假定:时间序列是由某个随机过程生成的。 在一定条件下,我们可以从样本观察值中估计随机过程的概率结构,这样我们就能够建立序列的模型并用过去的信息确定序列未来数值的概率。 常用模型:AR模型、MA模型、ARMA模型、ARIMA模型、VAR模型、ECM等。,统计特征不随时间变化而变化的过程是平稳过程(Stable Process) 如果过程是严平稳的( Strictly Stationary),那么对任意的t和k,时刻t的联合概率密度函数等于时刻t+k的联合概率密度函数。也就是说,对于具有严平稳性质的随机过程,其全部概率结构只依赖于时间之差。 严平稳性的条件很严格,我们希望稍微放松限制条件。于是从实际角度考虑,我们可以用联合分布的矩的平稳性来定义随机过程的平稳性。,一、平稳过程,m阶弱平稳过程(Weakly Stationary)是指随机过程的联合概率分布的矩直到m阶都是相等的。 若一个过程 r(t) 是2阶弱平稳过程,那么它会满足下列条件: (1)随机过程的均值保持不变; (2)随机过程的方差不随时间变化; (3)r(i)和r(j)之间的相关性只取决于时间之差 j- i。 注:弱平稳过程不一定是严平稳过程; 而严平稳过程若存在二阶矩,则必是2阶弱平稳过程。,例 白噪声过程,其中随机变量 满足,显然白噪声过程是一个2阶弱平稳过程。,例 随机游走模型,其中 是服从正态分布的白噪声,显然,因此Pt 是非平稳过程。,用X(t)表示一随机过程,滞后期为k的自相关系数定义为,二、自相关函数,如果X(t)是一个平稳过程,则有,因此,其中,协方差函数,自相关函数揭示了X(t)的相邻数据点之间存在多大程度的相关。,如果对所有的k0,序列的自相关函数等于0或近似等于0,则说明序列的当前值与过去时期的观测值无关,这时该序列没有可预测性。 相反,如果金融序列间是自相关的,就意味着当前回报依赖历史回报,因此可以通过回报的历史值预测未来回报。,例 白噪声过程的自相关函数,协方差函数,自相关函数,样本自相关函数,样本自相关函数可以用来检验序列的所有k0的自相关函数的真实值是否为0的假设。,Box和Pierce的Q统计量,如果检验通过,则随机过程是白噪声。,自相关函数还可被用于检验一个序列是否平稳。,平稳时间序列的自相关函数随着滞后期k的增加而快速下降为0,齐次非平稳过程,yt非平稳,但yt yt-1平稳,称yt为一阶齐次非平稳过程 例 随机游走过程是一阶齐次非平稳过程,例 利率的模型,时间序列的当前值依赖于过去时期的观察值。,三、自回归(Auto-Regression)模型,p阶自回归模型AR(p):,一阶自回归模型AR(1):,均值,例 带漂移项的随机游走过程,过程是非平稳的,不妨设常数项为0,平稳AR(1)过程的自相关函数,方差,协方差,自相关函数,这说明自回归过程具有无限记忆力。 过程当前值与过去所有时期的值相关,且时期越早,相关性越弱。,四、移动平均(Moving Averages)模型,q阶移动平均模型MA (q):,一阶移动平均模型MA (1):,均值,MA (1)过程的自相关函数,协方差,自相关函数,这说明MA (1)过程仅有一期的记忆力。 MA (q)过程有q期的记忆力。,五、混合自回归-移动平均(ARMA)模型,ARMA (p , q):,ARMA(1 , 1):,均值,ARMA (1,1)过程的自相关函数,协方差,方差,自相关函数,六、ARIMA模型,ARIMA (p,d,q):对原序列yt作d阶差分后应用ARMA (p,q),自回归算子:,移动平均算子:,d 的确定 : 差分后检查自相关函数,确定序列是否平稳,直到平稳为止。 p、q 的确定:由自相关函数、偏自相关函数确定,或由AIC、SC准则确定。,ARIMA模型的确认,若自回归过程的阶数为p,则对于jp应有偏自相关函数j 0 若移动平均过程的阶数为q,则对于jq应有自相关函数j 0 AIC、SC准则: 选择使准则值达到最小的模型阶数。,第三节 VAR模型,一、VAR(Vector AutoRegression,向量自回归),二、格兰杰因果关系(Granger Causality),如果变量x的过去和现在信息能有助于改进变量y的预测,则称y是由x格兰杰原因引起的( y is Granger-caused by x )。 即若变量x的过去和现在信息被考虑进总体的所有其它信息中时,y能被预测得更有效。,Granger, C. W. .J. (1969) Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica, 37, 424-438.,Granger Causality Test,假定(x , y)T 由VAR(p)过程生成,即,检验“x 不是y的Granger Cause”:,检验“y不是x的Granger Cause”:,三、脉冲响应函数(Impulse Response Functions),脉冲响应函数 确定每个内生变量对他自己及所有其它内生变量的变化是如何反应的。,四、方差分解(Variance Decomposition),把每个变量预测误差的方差按其成因分解为与各个内生变量相关联的组成部分。,第四节 协整理论,Engle, Robert F. and C.W.J. Granger (1987) Co-integration and Error Correction: Representation, Estimatio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延期付款协议书范本-合同范本
- 企业员工劳动合同协议书
- 2024年装修工程施工补充合同
- 建设工程施工合同的特点2024年
- 货车司机劳动合同协议
- 2024股份公司合作合同
- 新住宅房产购买合同范本
- 个人租车协议格式
- 装修终止合同协议2024年
- 有关小镇企业承包合同范本
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 第二次月考卷-2024-2025学年统编版语文六年级上册
- 车辆采购服务投标方案(技术方案)
- 中国融通集团招聘笔试题
- 公共基础知识1000题题库
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 2024年北京公交集团第四客运分公司招聘笔试参考题库附带答案详解
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 2023年春江苏开放大学《江苏红色文化》过程性考核作业一二和综合大作业+参考答案
- 加油站安全投入费用台帐
- 带状疱疹查房
评论
0/150
提交评论