《CH19极谱与伏安法》PPT课件.ppt_第1页
《CH19极谱与伏安法》PPT课件.ppt_第2页
《CH19极谱与伏安法》PPT课件.ppt_第3页
《CH19极谱与伏安法》PPT课件.ppt_第4页
《CH19极谱与伏安法》PPT课件.ppt_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第13章 伏安法与极谱法 (Polarography) 13.1 极谱分析与极谱图 极谱分析基本装置、极谱曲线极谱图 13.2 极谱定量分析基础 定量公式、影响扩散电流的因素、干扰电流极其消除 13.3 定性分析原理极谱波方程 极谱波分类、电极反应步骤、各类极谱波方程 13.4 极谱分析与实验技术 定量方法、实验技术、经典极谱分析的不足 13.5 极谱和伏安法的发展 单扫描极谱、循环伏安法、交流极谱、方波极谱、脉冲极谱,定义: 伏安法和极谱法是一种特殊的电解方法。以小面积、易极化的电极作工作电极,以大面积、不易极化的电极为参比电极组成电解池,电解被分析物质的稀溶液,由所测得的电流电压特性曲线来进行定性和定量分析的方法。当以滴汞作工作电极时的伏安法,称为极谱法,它是伏安法的特例。 伏安法-电位分析-电解分析区别:,历史: 伏安法由极谱法发展而来,后者是伏安法的特例。 1922年捷克斯洛伐克人Jaroslav Heyrovsky 以滴汞电极作工作电极首先发现极谱现象,并因此获 Nobel 奖。随后,伏安法作为一种非分析方法,主要用于研究各种介质中的氧化还原过程、表面吸附过程以及化学修饰电极表面电子转移机制。有时,该法亦用于水相中无机离子或某些有机物的测定。 50年代末至60年代初,光学分析迅速发展,该法变得不像原来那样重要了。 60年代中期,经典伏安法得到很大改进,方法选择性和灵敏度提高,而且低成本的电子放大装置出现,伏安法开始大量用于医药、生物和环境分析中。此外伏安法与 HPLC 联用使该法更具生机。 目前,该法仍广泛用于氧化还原过程和吸附过程的研究。,BC段:继续增加电压,或DME更负。从上式可知,cs 将减小,即滴汞电极表面的Cd2+迅速获得电子而还原,电解电流急剧增加。由于此时溶液本体的Cd2+来不及到达滴汞表面,因此,滴汞表面浓度cs 低于溶液本体浓度c,即cs c,产生所谓“浓差极化”。电解电流i与离子扩散速度成正比,而扩散速度又与浓度差(c-cs) 成正比与扩散层厚度 成反比, 即 i = k(c-cs)/。 BD段:外加电压继续增加,cs 趋近于0,(c-cs)趋近于c 时,这时电流的大小完全受溶液浓度c 来控制极限电流id,即: 这就是极谱分析的定量分析基础。 注意:式中极限电流 id 包括残余电流 iR (不由扩散产生),故极限电流减去残余电流即为极限扩散电流。当电流等于极限扩散电流的一半时所对应的电位称之为半波电位(E1/2),由于不同物质其半波电位不同,因此半波电位可作为极谱定性分析的依据。,极谱分析的特殊之处: 1)采用一大一小的电极:大面积的去极化电极参比电极;小面 积的极化电极; 2)电解是在静置、不搅拌的情况下进行。 极谱分析的特点: l 滴汞和周围的溶液始终保持新鲜保证同一外加电压下的电流的 重现和前后电解不相互影响。 l 汞电极对氢的超电位比较大可在酸性介质中进行分析(对SCE,其电位可负至-1.2V)。 l 滴汞作阳极时,因汞会被氧化,故其电位不能超过+0.4V。即该方法不适于阴离子的测定。 l 汞易纯化,但有毒,易堵塞毛细管。,13.2 极谱定量分析基础 一、定量公式: 由前述可知 ,但极限扩散电流大小到底与哪些因素有关? 根据Fick第一、第二定律可得到最大扩散电流(A): 该式反映了汞滴寿命最后时刻的电流,实际上记录仪记录的是平均电流附近的锯齿形小摆动。平均电流 上式亦称为Ilkovi公式。 其中 平均极限扩散电流(A);z电子转移数 D扩散系数(cm2/s);m汞滴流量(g/s);t测量时,汞滴周期时间(s); c待测物浓度(mmol/L)。,Cd2+的极谱图,为什么极谱曲线呈锯齿形? 据Ilkovi公式,扩散电流随时间t1/6增加,是扩散层厚度和滴汞面积随时间变化的总结果。在每一滴汞生长最初时刻电流迅速增加,随后变慢,汞滴下落时电流下降,即汞滴周期性下滴使扩散电流发生周期性变化,极谱波呈锯齿形。,0.5MCd2+, 1MHCl,1MHCl,二、影响扩散电流的因素 从 Ilkovi 公式知,影响扩散电流的因素包括: a) 溶液组份的影响 组份不同,溶液粘度不同,因而扩散系数D不同。分析时应使标准液与待测液组份基本一致。 b) 毛细管特性的影响 汞滴流速 m、滴汞周期 t 是毛细管的特性,将影响平均扩散电流大小。通常将m2/3t1/6称为毛细管特性常数。设汞柱高度为h,因m=kh,t=k1/h, 则毛细管特性常数m2/3t1/6=kh1/2,即 与h1/2成正比。 因此,实验中汞柱高度必须一致。该条件常用于验证极谱波是否扩散波。 c) 温度影响 除z外,温度影响公式中的各项,尤其是扩散系数D。室温下,温度每增加1oC,扩散电流增加约1.3%,故控温精度须在0.5oC。 思考:从平均极限扩散电流公式,可在实验中测定溶液的一些什么特性?,三、干扰电流极其消除 除用于测定的扩散电流外,极谱电流还包括:残余电流;迁移电流;极谱极大;氧波。这些电流通常干扰测定,应设法扣除! 1. 残余电流(Residual current): 产生:在极谱分析时,当外加电压未达分解电压时所观察到的微小电流,称为残余电流(ir)。包括因微量杂质引起的电解电流和因滴汞生长、掉落形成的电容电流(或充电电流)。它们直接影响测定的灵敏度和检出限。 电解电流:由存在于滴汞上的易还原的微量杂质如水中微量铜、溶液中未除尽的氧等引起。 电容电流:又为充电电流,是残余电流的主要部分。是由于滴汞的不断生长和落下引起的。滴汞面积变化双电层变化电容变化充电电流。充电电流为10-7A, 相当于10-5 mol/mL物质所产生的电位影响测定灵敏度和检测限。 扣除:ir 应从极限扩散电流中扣除:作图法和空白试验。,2. 迁移电流(Migration current) 产生:由于电极对待测离子的静电引力导致更多离子移向电极表面,并在电极 上还原而产生的电流,称为迁移电流。它不是因为由于浓度陡度引起的 扩散,与待测物浓度无定量关系,故应设法消除。 消除:通常是加入支持电解质(或称惰性电解质)类似于缓冲液。 3. 极谱极大(Maximum current) 产生:当外加电压达到待测物分解电压后,在极谱曲线上出现的比极限扩散电 流大得多的不正常的电流峰,称为极谱极大。其与待测物浓度没有直接 关系,主要影响扩散电流和半波电位的准确测定。其产生过程为:毛细 管末端汞滴被屏蔽表面电流密度不均表面张力不均切向调整张力 搅拌溶液离子快速扩散极谱极大。 消除:加入可使表面张力均匀化的极大抑制剂,通常是一些表面活性物质如明 胶、PVA、Triton X-100等。,4. 氧波(Oxygen waves) 产生:两个氧极谱波: O22H2eH2O2 -0.2V (半波电位) (O2 + H2O + 2e = H2O2 +2OH-) H2O22H2e2H2O -0.8V (半波电位) (H2O2 + 2e = 2OH-) 其半波电位正好位于极谱分析中最有用的电位区间(0-1.2V),如图所示。因而重叠在被测物的极谱波上,故应加以消除。 消除:a) 通入惰性气体如H2、N2、CO2 (CO2仅适于酸性溶液); b) 在中性或碱性条件下加入Na2SO3,还原O2; c) 在强酸性溶液中加入Na2CO3,放出大量二氧化碳以除去O2;或加入 还原剂如铁粉,使与酸作用生成H2,而除去O2; d) 在弱酸性或碱性溶液中加入抗坏血酸。 e) 分析过程中通N2保护(不是往溶液中通N2)。,1-空气饱和,出现氧双波 2-部分除氧 3-完全除氧,氧气对极谱波的影响,13.3 定性分析原理极谱波方程 尤考维奇公式反应了极限极谱电流与浓度之间的定量关系式,但作为电流-电位关系曲线的极谱波并没有具体数学表达式 i=f() 来描述。 极谱波方程就是描述极谱电流与滴汞电极电位之间关系的数学表达式。电极上进行的反应是非均相的,其反应有一系列的步骤。 一、极谱波分类 据电极过程分类:可逆波、不可逆波、动力波和吸附波 据电极反应类型:还原波和氧化波 据反应物类型:简单离子、配合物离子和有机物极谱波 二、电极反应步骤 传质前转化电化学反应后转化新相的生成,三、极谱波方程(推导过程从略) 1. 简单金属离子可逆极谱波方程 若滴汞电极上发生还原反应: 若滴汞电极上发生氧化反应: 若溶液中存在两种离子,其氧化态和还原态电位相近,则可得到阴阳混合极谱波。如 1MHCl 介质中,Tl+e=Tl (-0.55V); Tl2+e=Tl+ (0.77V) 从以上各方程中,以最后一项中的对数值对电位作图可得一直线。从直线斜率可求电子转移数z;从截距可求与浓度无关的半波电位(注意,当还原的金属不溶于 Hg 时,半波电位与浓度有关)。,2. 配位离子极谱波方程 设配离子与简单离子在溶液中的扩散系数相等,将二者的极谱方程相减,得 以 1/2 对 logLb- 作图,可分别求得配合物的 Kd 和配位数 p 3. 有机物的极谱波方程 与无机离子不同,有机物参与电极反应的为中性分子,大多数与H+有关,且反应物不形成汞齐。有机物极谱方程类似于简单离子的阴阳极谱方程:,4. 不可逆极谱波 上述极谱电流受因浓差极化引起的扩散电流控制。当电极反应较慢,即产生所谓电化学极化时,极谱电流受反应速度控制,这类极谱波称为不可逆波。其波形如图. 由于反应慢,电极上需有足够大电位变化时,才有明显电流通过,因而波形倾斜;当电极电位更负时,将有明显电流通过,形成浓差极化,不可逆波亦可用作定量分析。,二、实验技术 1. 除氧方法(见前述) 2. 底液的选择 除残余电流 ir 可通过作图法扣除外,其它干扰电流如迁移电流、极大电流和氧波还需在测量液中加入适当试剂。 支持电解质:HCl, H2SO4, NaAc-HAc, NH3-NH4Cl, NaOH, KCl; 极大抑制剂:动物胶,PVC, Triton X-100; 除氧剂:中性或碱性中加Na2SO3, 微酸性液中加抗坏血酸; pH 值:控制酸度的缓冲液; 其它试剂:如可改变离子半波电位的配合剂,以消除干扰等; 这些加入各种试剂后的溶液称为“底液”。 思考:何为伏安分析中的底液?,3. 测量温度及汞柱高度控制 4. 汞的使用 a) 汞的纯化: 氧化法:将空气通入汞内(14 hrs),直到汞液面无黑色氧化物为止,用分液漏斗 分离。 洗涤法:从漏斗(下端为插入洗涤液中的毛细管)向80cm 40cm的洗涤管中(下 端为接 U 形细管,洗涤管内充5%HNO3或5%Hg(NO3)2)加入待洗汞。 重复洗涤23次。 蒸馏法:将汞洗净,放入真空蒸馏器进行减压蒸馏,可得高纯度汞。 电解法:可得高纯度汞。 b) 防止汞中毒 通风良好、对撒落的汞应及时清理(用刷子或汞镊仔细收集并放于水中,防止与空气接触;对不能清理的要撒上硫磺粉或用三氯化铁清洗)。,经典直流极局限性: 1922年以来,对经典极谱基础理论和实际应用研究较深入积累了丰富的文献资料,为现代极谱的发展奠定了基础。然而它也有许多不足之处: 1)用汞量及时间:经典极谱获得一个极谱图需汞数百滴,而且施加的电压速度缓慢,约200mV/min。在一滴汞的寿命期间,滴汞电极电位可视为不变,因此经典极谱也称恒电位极谱法。可见,经典极谱法既费汞又费时间; 2)分辨率:经典直流极谱波呈台阶形,当两物质电位差小于200mV时两峰重叠,使峰高或半峰宽无法测量,因此分辨率差; 3)灵敏度:经典极谱的充电电流大小与由浓度为10-5M的物质(亦可称去极剂)产生的电解电流相当,因此灵敏度低。设法减小充电电流,增加信噪比是提高灵敏度的重要途径; 4)iR降:在经典极谱法中,常使用两支电极,当溶液iR降增加时,会造成半波电位位移以及波形变差。因此,在现代极谱法中,常采用三电极系统。,13.5 极谱和伏安法的发展 一、单扫描极谱 单扫描极谱装置如图所示。,扫描速率加快,电极表面离子迅速还原,产生瞬时极谱电流,电极周围离子来不及扩散,扩散层厚度增加,导致极谱电流迅速下降,形成峰形电流。 对于平面电极,峰电流表达式为: 对于滴汞电极,峰电流表达式为: 上面两式中 v 为扫描速率,tp 为峰电流出现的时间,A为平板电极面积。 从峰电流极谱方程可看出,随扫描速率 v 增加,峰电流增加,检出限可达10-7M。但扫描速率过大,电容电流将增加,即信噪比将增加,灵敏度反而下降。对单扫描极谱曲线作导数处理,可进一步提高分辨率。 峰电位p与普通极谱波半波电位1/2之间的关系为: 即可通过峰电位求得半波电位,从而进行定性分析。,循环极谱波如图所示。在一次扫描过程中完成一个氧化和还原过程的循环,故此法称为循环伏安法。 从循环伏安图中可测得阴极峰电流 ipc 和峰电位 pc、阳极峰电流 ipa 和峰电位pa。对于可逆反应,则曲线上下对称,此时上下峰电流的比值及峰电位的差值分别为: 从峰电流比可以推断反应是否可逆;峰电位差与扫描速率无关,且可以求得可逆反应的条件电极电位(pa+pc)/2。此外,循环伏安法可用于研究电极反应过程。,3. 极谱电流 ip 与半波电位 p 式中,A电极面积/cm2;U交流电压振幅/mV;1/2经典极谱半波电位/mV 4. 特点 a) 极谱波呈峰形,分辨率高,可分辨电位相差40mV的两个极谱波; b) 可克服氧波干扰(交流极谱对可逆波灵敏,而氧波为不可逆波); c) 电容电流较大(交流电压使汞滴表面和溶液间的双电层迅速充放电),与单扫描极谱比,检出限未获改善; 采用相敏交流极谱,可完全克服电容电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论