




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.1.2线段的垂直平分线的性质,1线段的垂直平分线的定义 经过线段_并且_这条线段的直线,叫做这条,线段的垂直平分线,中点,垂直于,2轴对称和轴对称图形的性质 (1)如果两个图形关于某条直线对称,那么对称轴是任何一,对对应点所连线段的_,垂直平分线,(2) 轴对称图形的对称轴,是任何一对对应点所连线段的,_,复习巩固:,垂直平分线,学习目标:,1、探索并理解对应点所连的线段被对称轴垂直平分的性质。 2、探索并理解线段垂直平分线性质 3、通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法。 4、在数学学习的活动中养成良好的思维品质,自学指导:,认真看61-62页的内容. 1.结合61页理解线段垂直平分线的两个性质。 2.掌握画线段垂直平分线的尺规作图方法。,你能用不同的方法验证这一结论吗?,探索并证明线段垂直平分线的性质,如图,直线l 垂直平分线段AB,P1,P2,P3,是 l 上的点,请猜想点P1,P2,P3, 到点A 与点B 的距 离之间的数量关系,相等,交流展示:,已知:如图,直线lAB,垂足为C,AC =CB,点 P 在l 上 求证:PA =PB,探索并证明线段垂直平分线的性质,证明:“线段垂直平分线上的点到线段两端点的距 离相等”,交流展示:,用几何语言表示为: CA =CB,lAB, PA =PB,证明: lAB, PCA =PCB 又 AC =CB,PC =PC, PCA PCB(SAS) PA =PB,线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等,已知:如图,直线lAB,垂足为C,AC =CB,点P 在l 上求证:PA =PB,交流展示:,解: ADBC,BD =DC AD 是BC 的垂直平分线 AB =AC 点C 在AE 的垂直平分线上 AC =CE AB =AC =CE,如图,ADBC,BD =DC,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?, AB =CE,BD =DC, AB +BD =CD +CE 即 AB +BD =DE ,自学检测1:,如图 1,如果 PA PB,试说明点 P 在线段 AB 的 垂直平分线上 证明:过 P 点作 lAB,垂足是 C,,在 RtAPC 与 RtBPC 中, PA PB,PCPC, APCBPC(_) AC_,且 PCAB. 即 l 是线段 AB 的垂直平分线,HL,BC,交流展示:,探索并证明线段垂直平分线的判定,如图 ,ABAD,BCDC,E 是 AC 上的一 点求证:BEDE,思路导引:先证 AC 是 BD 的垂直平分线,再根据 线段的垂直平分线的性质得到 BEDE.,自学检测2:,证明:ABAD, 点 A 在线段 BD 的垂直平分线上 又BCDC, 点 C 也在线段 BD 的垂直平分线上 两点确定一条直线 AC 是线段 BD 的垂直平分线 又点 E 在 AC 上, BEDE.,【易错警示】要证明一条直线是线段的垂直平 分线,必须要证明直线上有两点在垂直平分上,课堂小结:,谈谈你有什么收获 ?,如图 ,线段 AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025《家具购买合同样本》
- 材料运输采购合同范本
- 工地工具收购合同范本
- 简易绿化劳务合同范本
- 意大利酒店转让合同范本
- 安徽冶金科技职业学院《剧本创作与分镜设计》2023-2024学年第二学期期末试卷
- 浙江省衢州市重点中学2024-2025学年初三第一次调研考试(2月)英语试题含答案
- 2024-2025学年山东省泰安市泰山区大津口中学初三化学试题4月适应性考试试题含解析
- 河南省周口市扶沟县包屯高级中学2025年高三下学期第一次联考生物试题理试卷含解析
- 湘乡市2025年四年级数学第二学期期末检测试题含解析
- 包头铸胶滚筒工艺
- 2024年山东春季高考数学试题word版(含答案解析)
- (完整版)东南大学工程项目管理陆惠民第二章工程项目策划和决策(课后习题答案)
- 盐的销售与市场拓展
- ST语言编程手册
- 医院HIS信息管理系统故障应急预案
- 司法案例研究方法与技巧
- 足球运球课件
- (7)-2.3 理想信念是精神之钙
- MSA-测量系统分析模板
- 《中国特色社会主义进入新时代》PPT课件下载
评论
0/150
提交评论