




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷上城区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)2 若直线l的方向向量为=(1,0,2),平面的法向量为=(2,0,4),则( )AlBlClDl与相交但不垂直3 用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为( )Aa,b,c中至少有两个偶数Ba,b,c中至少有两个偶数或都是奇数Ca,b,c都是奇数Da,b,c都是偶数4 如图,设全集U=R,M=x|x2,N=0,1,2,3,则图中阴影部分所表示的集合是( )A3B0,1C0,1,2D0,1,2,35 已知函数f(x)=1+x+,则下列结论正确的是( )Af(x)在(0,1)上恰有一个零点Bf(x)在(1,0)上恰有一个零点Cf(x)在(0,1)上恰有两个零点Df(x)在(1,0)上恰有两个零点6 如图,该程序运行后输出的结果为( )A7B15C31D637 长方体ABCDA1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是( )A30B45C60D1208 设命题p:函数y=sin(2x+)的图象向左平移个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x1|在1,+)上是增函数则下列判断错误的是( )Ap为假Bq为真Cpq为真Dpq为假9 设奇函数f(x)在(0,+)上为增函数,且f(1)=0,则不等式0的解集为( )A(1,0)(1,+)B(,1)(0,1)C(,1)(1,+)D(1,0)(0,1)10已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D11执行如图所示的程序框图,输出的结果是()A15 B21 C24 D3512已知定义在R上的函数f(x)满足f(x)=,且f(x)=f(x+2),g(x)=,则方程g(x)=f(x)g(x)在区间3,7上的所有零点之和为( )A12B11C10D9二、填空题13如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为cm314下图是某算法的程序框图,则程序运行后输出的结果是_15已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想16设幂函数的图象经过点,则= 17已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是18直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是三、解答题19一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图; (2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=, =x20已知函数f(x)=(log2x2)(log4x)(1)当x2,4时,求该函数的值域;(2)若f(x)mlog2x对于x4,16恒成立,求m的取值范围21已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和22长方体ABCDA1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点(1)求证:BD1平面A1DE;(2)求证:A1D平面ABD123已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 24(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且上城区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B2 【答案】B【解析】解: =(1,0,2),=(2,0,4),=2,因此l故选:B3 【答案】B【解析】解:结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数反设的内容是 假设a,b,c中至少有两个偶数或都是奇数故选B【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“4 【答案】C【解析】解:由图可知图中阴影部分所表示的集合MN,全集U=R,M=x|x2,N=0,1,2,3,M=x|x2,MN=0,1,2,故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键5 【答案】B【解析】解:f(x)=1x+x2x3+x2014=(1x)(1+x2+x2012)+x2014;f(x)0在(1,0)上恒成立;故f(x)在(1,0)上是增函数;又f(0)=1,f(1)=110;故f(x)在(1,0)上恰有一个零点;故选B【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题6 【答案】如图,该程序运行后输出的结果为( )D【解析】解:因为A=1,s=1判断框内的条件15成立,执行s=21+1=3,i=1+1=2;判断框内的条件25成立,执行s=23+1=7,i=2+1=3;判断框内的条件35成立,执行s=27+1=15,i=3+1=4;判断框内的条件45成立,执行s=215+1=31,i=4+1=5;判断框内的条件55成立,执行s=231+1=63,i=5+1=6;此时65,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5故答案为5【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束7 【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(1,1,0),B(1,1,0),G(0,1,1),=(1,0,1),设直线A1C1与BG所成角为,cos=,=60故选:C【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用8 【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x1|在1,0上是减函数,在0,+)上是增函数故命题q为假命题;则q为真命题;pq为假命题;pq为假命题,故只有C判断错误,故选:C9 【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(1)=f(1)=0,又f(x)在(0,+)上为增函数,则奇函数f(x)在(,0)上也为增函数,当0x1时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;当1x0时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;所以x的取值范围是1x0或0x1故选D【点评】本题综合考查奇函数定义与它的单调性10【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式11【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C12【答案】B【解析】解:f(x)=f(x+2),函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在3,7上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在3,7上的交点的横坐标之和为4+4+3=11,即函数y=f(x)g(x)在3,7上的所有零点之和为11故选:B【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法属于中档题二、填空题13【答案】6 【解析】解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:614【答案】【解析】由程序框图可知:016271234符合,跳出循环15【答案】1【解析】16【答案】【解析】试题分析:由题意得考点:幂函数定义17【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题18【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题三、解答题19【答案】 【解析】【专题】应用题;概率与统计【分析】(1)利用所给的数据画出散点图;(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式【解答】解:(1)画出散点图,如图所示:(2)=12.5, =8.25,b=0.7286,a=0.8575回归直线方程为:y=0.7286x0.8575;(3)要使y10,则0.728 6x0.857510,x14.901 9故机器的转速应控制在14.9转/秒以下【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目20【答案】 【解析】解:(1)f(x)=(log2x2)(log4x)=(log2x)2log2x+1,2x4令t=log2x,则y=t2t+1=(t)2,2x4,1t2当t=时,ymin=,当t=1,或t=2时,ymax=0函数的值域是,0(2)令t=log2x,得t2t+1mt对于2t4恒成立mt+对于t2,4恒成立,设g(t)=t+,t2,4,g(t)=t+=(t+),g(t)=t+在2,4上为增函数,当t=2时,g(t)min=g(2)=0,m021【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题22【答案】 【解析】证明:(1)连结A1D,AD1,A1DAD1=O,连结OE,长方体ABCDA1B1C1D1中,ADD1A1是矩形,O是AD1的中点,OEBD1,OEBD1,OE平面ABD1,BD1平面ABD1,BD1平面A1DE(2)长方体ABCDA1B1C1D1中,AB=2,AA1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影技能测试题及答案
- 集成电路技术试题及答案
- 高考地理数学试题及答案
- 革新的图书管理员考试试题及答案
- 高一下试题及答案
- 食物选择技巧与营养平衡试题及答案
- 金属乐队测试题及答案
- 计算机二级考试全方位试题及答案
- 重要医学知识考察试题及答案
- 经营取向测试题及答案
- 2025年中国装配式钢结构行业市场前瞻与投资战略规划分析报告
- 2024年第四季度 国家电网工程设备材料信息参考价
- 信访业务知识培训课件
- 化疗药物外渗预防及护理
- 年度得到 · 沈祖芸全球教育报告(2024-2025)
- 【八年级下册地理中图北京版】期中真题必刷卷A-【期中真题必刷卷】(北京专用)(解析版)
- 2024版建筑资质借用服务与管理合同范本3篇
- 2024-2030年国家甲级资质:中国废旧电器电子产品回收处理融资商业计划书
- 2024年中国农业银行系统招聘笔试考试题库(浓缩500题)
- 中国近现代史基本问题专题研究
- 高中历史课件:中国古代儒学的新发展-宋明理学
评论
0/150
提交评论