




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数与导数经典例题-高考压轴1. 已知函数,其中()当时,求曲线在点处的切线方程;()当时,求的单调区间;()证明:对任意的在区间内均存在零点2. 已知函数,()设函数F(x)18f(x)x2h(x)2,求F(x)的单调区间与极值;()设,解关于x的方程;()设,证明:3. 设函数,()求的单调区间;()求所有实数,使对恒成立 注:为自然对数的底数4. 设,其中为正实数.()当时,求的极值点;()若为上的单调函数,求的取值范围.5. 已知a,b为常数,且a0,函数f(x)=-ax+b+axlnx,f(e)=2(e=271828是自然对数的底数)。 (I)求实数b的值; (II)求函数f(x)的单调区间;(III)当a=1时,是否同时存在实数m和M(m0,知在R上恒成立,因此由此并结合,知5. 已知a,b为常数,且a0,函数f(x)=-ax+b+axlnx,f(e)=2(e=271828是自然对数的底数)。(I)求实数b的值;(II)求函数f(x)的单调区间;(III)当a=1时,是否同时存在实数m和M(mM),使得对每一个tm,M,直线y=t与曲线y=f(x)(x,e)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。【解析】22本小题主要考查函数、导数等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想,满分14分。解:(I)由(II)由(I)可得从而,故:(1)当(2)当综上,当时,函数的单调递增区间为,单调递减区间为(0,1);当时,函数的单调递增区间为(0,1),单调递减区间为。(III)当a=1时,由(II)可得,当x在区间内变化时,的变化情况如下表:-0+单调递减极小值1单调递增2又的值域为1,2。据经可得,若,则对每一个,直线y=t与曲线都有公共点。并且对每一个,直线与曲线都没有公共点。综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个,直线y=t与曲线都有公共点。6. 设函数,其中,a、b为常数,已知曲线与在点(2,0)处有相同的切线l。(I) 求a、b的值,并写出切线l的方程;(II)若方程有三个互不相同的实根0、,其中,且对任意的,恒成立,求实数m的取值范围。【解析】20本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)解:()由于曲线在点(2,0)处有相同的切线,故有由此得所以,切线的方程为 ()由()得,所以依题意,方程有三个互不相同的实数,故是方程的两相异的实根。所以又对任意的成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探讨对2025年证券从业资格证考试的递延策略试题及答案
- 现代审计与风险控制的结合试题及答案
- 财务决策应对策略试题及答案2025
- 江苏省泰州市本年度(2025)小学一年级数学部编版随堂测试(下学期)试卷及答案
- 财务分析工具金融理财师考试试题及答案
- 证券市场信息不对称现象试题及答案
- 常见财务报表分析方法试题及答案
- 考前冲刺微生物检验试题及答案
- 微生物同时检验技术相关试题
- 项目管理技能检验试题及答案
- 大语言模型基础微课版课件 第7章 提示工程与微调
- 中医治疗协议书范本(2篇)
- 沐足行业严禁黄赌毒承诺书
- 【MOOC】C语言程序设计-华中科技大学 中国大学慕课MOOC答案
- 《RTK测量操作步骤》课件
- 招投标法律培训课件
- 结构性存款培训课件
- 高考语文复习【知识精研】《千里江山图》高考真题说题课件
- 人教版数学八年级下册期中考试试卷有答案
- 苏州市智能建造试点项目评分表(暂行)
- 登高车高空作业施工方案
评论
0/150
提交评论