




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
植基於雙線性配對運算的鑑別式金鑰協議協定 An ID-based Authenticated Tripartite Key Agreement Protocol Based on Bilinear Pairings,研 究 生:周世峯 指導教授:王有禮 博士,國立臺灣科技大學 資訊管理系 碩士學位論文口試 中華民國九十五年一月九日,2,Outline,Introduction Bilinear pairings and some assumptions Jouxs protocol LZC protocol Weakness in the LZC protocol Shim-Woos modified protocol Our improved protocol Security and efficiency analysis Conclusion,3,Introduction,Key agreement (key exchange) - allow two or more parties to share a secret over an insecure channel Diffie-Hellmam protocol (1976) - man-in-the-middle attack (MITM attack) Jouxs protocol (2000) - the first one round tripartite key agreement protocol with pairing - MITM attack Boneh and Franklin (2001) - ID-based Encryption from the weil pairing Liu et al. (2003) proposed an ID-based one round authenticated tripartite key agreement protocol (LZC protocol) - to overcome the MITM attack in Jouxs protocol - it can create eight session keys per one instance - Unknown key-share attack Shim et al. (2005) proposed a modified protocol (Shim-Woo protocol) - satisfies all the required security attributes - dose not require any one-way hash functions Our improved protocol - more efficient and suitable for smart card and mobile devices - satisfies all the required security attributes,4,Key agreement How to secure communication in an insecure channel?,Diffie-Hellmam protocol (1976),驗證 Diffie-Hellman 演算法 n = 47, g = 3 為系統公開參數 Alice 選定:x = 8 計算出: gx mod n = 38 mod 47 = 28 mod 47 訊息 (1) = 28 Bob 選定:y =10 , 計算出: gy mod n = 310 mod 47 = 17 mod 47 訊息 (2) = 17 Alice 計算交談金鑰 KA: (gy mod n)x = gxy mod n = 178 mod 47 = 4 mod 47 Bob 計算交談金鑰 KB: (gx mod n)y = gxy mod n = 2810 mod 47 = 4 mod 47 交談鑰匙 KA = 4 = KB,Bob,Alice, confidentiality, data integrity,KA(銀行密碼:5168888) -xxxxxxxxxxx- KB(銀行密碼:5168888),DLP:given x gx mod n is easy, given gx mod n x=? is hard.,5,Man-in-the-middle attack,Bob,Alice,Eva,Authentication: Message authentication code (MAC), Message digest (DS) Digital Signature, Because it does not attempt to authenticate the communicating entities.,written signature: can easily to forge Digital signature: requires huge computational resources,6,Desirable security attributes,Known-Key Security - learned previous session keys cant deduce future session keys Forward Secrecy - lost long-term secrets the secrecy of previous session keys is not affected Key-Compromise Impersonation resilience Unknown Key-Share resilience - A cant be coerced into sharing a key with others without As knowledge AB, BCA, A has a unknown key share with C Key Control - the key should be determined jointly by all communicating entities (Alice and Bob),A,B,C,E,A,7,Elliptic Curve Cryptography (ECC),E: y2 = x3 + ax + b If x3 + ax + b contains no repeated factors, or equivalently if 4a3 + 27b2 is not 0, then the elliptic curve y2 = x3 + ax + b can be used to form a algebraic group. addition: P + Q = R Multiplication: kP = P + + P,8,Elliptic Curve Cryptography,The determination of a point nP in this manner is referred to as Scalar Multiplication of a point. The ECDLP is based upon the intractability of scalar multiplication products. ECDLP:given two points Q, P to determine k such that Q = kP is hard.,9,Bilinear pairing (Weil pairing, Tate pairing),10,Some assumptions,DLP:給定 b, n, g 要求得 x 且滿足 gx = b (mod n),ECDLP:給定橢圓曲線上兩相異點 P, Q 要求得一整數 k 且滿足 Q = kP,DHP:給定 ga mod n, gb mod n 要求得 gc mod n 且滿足 c = ab mod q,BDHP:給定 P, aP, bP, cP 要求得 abc 且滿足 e(P, P)abc,DDHP:給定 P, aP, bP 要決定 abc 且滿足 e(P, P)abc,DBDHP:給定 P, aP, bP, cP 要決定 c = ab mod q 且滿足 e(P, P)c = e(P, P)ab,CDHP:給定 P, aP, bP 要求得 abP,SCDHP:給定 P, aP 要求得 a2P,兩者互為等價關係,11,Jouxs tripartite key agreement protocol,B,A,C,Setup:,Messages exchange:,12,Cryptanalysis on Jouxs protocol Man-in-the-middle attack,13,LZC protocol (1/2),Setup:,Messages exchange:,Private key extraction:,A computes:,A verifies:,SA:identify user A H is a hash function H(PA, PA) is a fingerprint PA, PA H(PA, PA) is easy H(PA, PA) PA, PA is hard aP, aP aPA CDHP,14,LZC protocol (2/2),15,Weakness in the LZC protocol (1/2),16,Weakness in the LZC protocol Unknown Key-Share attack (2/2),B and C compute the same session keys:,A computes the session keys:,A 存 1000到A的帳戶,B E 存 1000到E的帳戶,B 結果B 存了1000給E,而不是給A,17,Shim-Woos protocol (1/2),Setup:,Messages exchange:,Private key extraction:,A computes:,A verifies:,18,Shim-Woos protocol (2/2),19,Our improved protocol,20,Our Ideas,21,Setup:,Messages exchange:,Private key extraction:,A computes:,A verifies:,改變的地方,New protocol (1/2),22,New protocol (2/2),23,Security analysis,Authenticity of broadcast message: Without long-term SA, SB, SC - Implicit key authentication: Without long-term SA, SB, SC cant forge a signature TA - Known-key security: Cant extract a or a from DLP - Forward secrecy: Lost SA, PA, PA, TA TA - SA = aPpub + aPpub given aP, aP, asP + asP, to recover a and a CDHP - Key-compromise impersonation resilience: Lost SA, E(B) A, C : PB, PB, TB E doesnt know b or b corresponding to PB = bP, PB = bP. - Unknown key-share resilience: Only an entity who knows a, a and SA can generate a valid TA. Known aP, sP asP ; aP, sP asP both CDHP,24,Efficiency analysis,LZC Shim-Woo Ours,25,Conclusion,Our further improved protocol is more efficient than all previous protocol that we know. LZC protocol Shim-Woo protocol Its satisfies all the required security attributes and more suitable for smart card and mobile devices.,Thanks for your attention!,References,1 S.S. Al-Riyami and K. G. Paterson. “Tripartite Authenticated Key Agreement Protocols from Pairings,” In proceedings of IMA Conference of Cryptography and Coding, LNCS 2898, 2003, pp. 332-359. Also available at /2002/035. 2 F. Bao, R. Deng, H. Zhu, “Variations of DiffieHellman problem,” in: Proceedings of ICICS 2003, LNCS 2836, Springer-Verlag, 2003, pp. 301312. 3 P.S.L.M. Barreto, H. Y. Kim and M. Scott. “Efficient Algorithms for Pairing Based Cryptosystems,” In proceedings of Crypto 2002, LNCS 2442, pp. 354-368, Springer-Verlag, 2002. Also available at /2002/008. 4 R. Barua, R. Dutta, P. Sarkar. “Extending Joux Protocol to Multi Party Key Agreement,” In proceedings of Indocrypt 2003, LNCS 2904, pp. 205-217, Springer-Verlag, 2003. Also available at /2003/062. 5 S. Blake-Wilson & A. Menezes, “Authenticated Diffie-Hellman key agreement protocols,” Proc. 5th Annual Workshop on Selected Areas in Cryptography (SAC98), Kingston, Canada, 1999, 339-361. 6 S. Blake-Wilson, D. Johason and A. Menezes. “Key Agreement Protocols and Their Security Analysis,” In proceedings of the sixth IMA International Conference on Cryptography and Coding, LNCS 1355, pp. 30-45, Springer-Verlag, 1997. 7 S. Blake-Wilson, D. Johnson, A. Menezes, “Unknown key-share attacks on the station-tostation (STS) protocol,” In proceedings of PKC 1999, LNCS 1560, Springer-Verlag, 1999, pp. 154170. 8 D. Boneh. and M. Franklin. “Identity-based Encryption from the Weil pairing,” SIAM J. of Computing, 32(3):586-615, 2003. Extended abstract in Advances in Crptology-Crypto01, LNCS 2139, pp.213-229, Springer-Verlag, 2001. 9 C. Boyd and J. M. G. Nieto. “Round-optimal Contributory Conference Key Agreement,” In proceedings of PKC 2003, LNCS 2567, pp. 161-174, Springer-Verlag, 2003. 10 E. Bresson and D. Catalano. “Constant Round Authenticated Group Key Agreement via Distributed Computing,” In proceedings of PKC 2004, LNCS 2947, pp. 115-129, Springer-Verlag, 2004. 11 E. Bresson, O. Chevassut, A. Essiari and D. Pointcheval. “Mutual Authentication and Group Key Agreement for Low-power Mobile Devices,” Computer Communication, 27(17), pp. 1730-1737, 2004. A preliminary version appeared in proceedings of the 5th IFIP-TC6/IEEE , MWCN 2003, pp. 59-62, 2003. Full version available at http:/www.di.ens.fr/ bresson.,References,12 E. Bresson, O. Chevassut, and D. Pointcheval. “Provably Authenticated Group Diffie-Hellman Key Exchange - The Dynamic Case,” In proceedings of Asiacrypt 2001, LNCS 2248, pp. 290-309, Springer-Verlag, 2001. 13 W. Diffie, M. Hellman. “New Directions In Cryptography,” IEEE Transaction on Information Theory, IT-22 (6) : 644-654, November, 1976. 14 R. Dutta. and R. Barua. “Overview of Key Agreement Protocols,” Cryptology ePrint Archive, Report 2005/289, Available at /2005/289. 15 S. Galbraith, K. Harrison and D. Soldera. “Implementing the Tate Pairing,” In proceedings of Algorithm Number Theory Symposium - ANTS V, LNCS 2369, pp. 324-337, Springer-Verlag, 2002. 16 F. Hess. “Efficient Identity Based Signature Schemes Based on Pairings,” In proceedings of SAC 2002, LNCS 2595, pp. 310-324, Springer-Verlag, 2002. 17 A. Joux. “A One Round Protocol for Tripartite Diffie-Hellman,” In proceedings of ANTS 4, LNCS 1838, pp. 385-394, Springer-Verlag, 2000. 18 Y. Kim, A. Perrig, and G. Tsudik. “Communication-efficient Group Key Agreement,” In proceedings of the 17th International Information Security Conference, IFIP SEC 2001, pp. 229-244, 2001. 19 Y. Kim, A. Perrig, and G. Tsudik. “Tree Based Group Key Agreement,” Cryptology ePrint Archive, Report 2002/009, Available at /2002/009. 20 L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. “An Efficient Protocol for Authenticated Key Agreement,” Technical Report CORR 98-05, Department of C & O, University of Waterloo, 1998. Also available at /law98efficient. 21 S. Liu, F. Zhang, K. Chen, “ID-based tripartite key agreement protocol with pairing,” 2003 IEEE International Symposium on Information Theory, 2003, pp. 136143, or available at Cryptology ePrint Archive, Report 2002/122. 22 T. Matsumoto, Y. Takashima and H. Imai. “On Seeking Smart Public-key Distribution Systems,” In Transactions of the IECE of Japan, E69, pp. 99-106, 1986. 23 A. Menezes, T. Okamoto, and S. Vanstone, “Reducing elliptic curve logarithms to logarithms in a finite field,” IEEE Transaction on Information Theory, Vol.39, pp.1639-1646, 1993. 24 D. Nalla and K. C. Reddy. “ID-Based Tripartite Authenticated Key Agreement Protocolsfrom Pairings,” Cryptology ePrint Archive, Report 2003/004, Available at /2003/004.,References,25 D. Nalla and K. C. Reddy. “Identity Based Authenticated Group Key Agreement Protocol,” In proceedings of Indocrypt 2002, LNCS 2551, pp. 215-233, Springer-Verlag, 2002. 26 D. Nalla. “ID-Based Tripartite Key Agreement with Signature,” Cryptology e
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延边大学《城市设计Ⅰ》2023-2024学年第二学期期末试卷
- 四川省成都经开区实验高级中学2025届高考模拟调研卷数学试题(一)含解析
- 江苏省盐城市东台实验中学2025年中考抽测语文试题样题(A卷)试卷含解析
- 武夷学院《细胞生物学实验》2023-2024学年第一学期期末试卷
- 辽宁省抚顺市清原县2025年数学三下期末统考试题含解析
- 上海市金山区金山中学2025届高三期末试题含解析
- 江苏省丹阳市2025年校初三4月考语文试题含解析
- 重庆第二师范学院《多媒体制作》2023-2024学年第一学期期末试卷
- 泰州学院《外科学各论》2023-2024学年第二学期期末试卷
- 闽南理工学院《隧道工程(B)》2023-2024学年第二学期期末试卷
- 《颈椎病的针灸治疗》课件
- 《木兰诗》历年中考古诗欣赏试题汇编(截至2024年)
- 2024年音乐节行业发展前景预测及投资策略研究报告
- 2024西部县域经济百强研究
- 2025-2030年中国IPTV产业行业发展趋势及前景调研分析报告
- 国企改革三年行动培训
- 医美诊所院感知识培训课件
- 上海市家庭居室装饰装修施工合同书
- 物联网技术及应用基础(第2版) -电子教案
- 新能源汽车租赁市场发展方案
- 货架回收合同范例
评论
0/150
提交评论