




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
连接直线外一点与直线上各点的所有线段中,垂线段最短。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 三角形两边之和大于第三边,故同时满足ABC三边长a、b、c的不等式有:a+bc,b+ca,c+ab三角形两边之差小于第三边,故同时满足ABC三边长a、b、c的不等式有:ab-c,ba-c,cb-a注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.三角形的一个外角与与之相邻的内角互补 多边形的对角线条对角线;n边形的内角和为(n2)180;多边形的外角和为360角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上 勾股定理1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2c2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2b2c2,那么这个三角形是直角三角形。2. 勾股数:满足a2b2c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2a2b2,则ABC是以C为直角的三角形;若a2b2c2,则此三角形为钝角三角形(其中c为最大边);若a2b2c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为的线段6.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法圆1、圆的定义:()在一个平面内线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段叫做半径。()圆是所有点到定点的距离等于定长的点的集合。注意:确定一个圆有个元素,一个是圆心,一个是半径,圆心确定圆的位置,半径确定圆的大小。、和圆相关的概念:()弦:连结圆上任意两点的线段;(弦不一定是直径,直径一定是弦,直径是圆中最长的弦)()直径:经过圆心的弦;()弧:圆上任意两点间的部分;(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)()半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;()优弧:大于半圆的弧,用三个大写字母表示;()劣弧:小于半圆的弧,用两个大写字母表示;()弓形由弦及其所对的弧组成的图形;()等圆:能够重合的两个圆;()等弧:在同圆或等圆中,能够互相重合的弧;()同心圆:圆心相同,半径不相等的两个圆;()圆心角:定点是圆心的角;()圆周角:顶点在圆上,并且两边都和圆相交的角;()弦心距:圆心到弦的距离。注意:()直径等于半径的倍;()同圆或等圆的半径相等;()等弧必须是同圆或等圆中的弧;()弧长相等的弧不一定是等弧,但等弧的弧长必相等。、圆心角的定义及性质:()圆心角的定义:定点是圆心的角叫做圆心角。()圆心角、弦、弧的有关定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;在同圆或等圆中,如果两条弧相等,那么这两条弧所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么这两条弦所对的圆心角相等,所对的弧相等。4、圆周角的定义及性质:()圆周角的定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角。注意:圆周角必须具备两个条件:顶点在圆上;角的两边都和圆相交,二者缺一不可;圆周角和圆心角的相同点:两边都和圆相交;不同点:圆心角的顶点在圆心;圆周角的顶点在圆上。()圆周角的性质:一条弧所对的圆周角等于该弧所对的圆心角的一半;在同圆或等圆中,同弧(或等弧)所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等;半圆或直径所对的圆周角都相等,都等于(直角);的圆周角所对的弦是圆的直径,所对的弧是半圆;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。5、垂径定理与推理:()垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。注意:这个结论中涉及圆中不是直径的弦与直径所在直线的关系,如果圆的一条非直径的弦和一条直线满足以下五个条件中的任意两个,那么它一定满足其余三个:直线过圆心;直线垂直于弦;直线平分弦;直线平分弦所对的劣弧;直线平分弦所对的优弧,也可简单地理解为“二推三”。()垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。6、圆的对称性:()圆既是中心对称图形,又是轴对称图形。注意:圆具有旋转不变性,有无数条对称轴。()在同圆或等圆中,圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两弦的弦心距中,有一组量相等,那么它们所对应的其余各组量也分别相等。注意:运用本知识时应注意其成立的条件:“在同圆或等圆中”,也可简单地理解为“一推三”。、点与圆的位置关系:点与圆有三种位置关系:点在圆外、点在圆上、点在圆内。设的半径为,点到圆心的距离为,则有:点在圆外;点在圆上;点在圆内。注意:可以根据点到圆心的距离与圆的半径的大小比较来确定点与圆的位置关系。、确定圆的条件:过一个点可以作无数个圆;过两个点可以作无数个圆,这些圆的圆心在连接这两个点的线段的垂直平分线上;过在同一条直线上的三个点不能作圆;过不在同一直线上的三个点可确定一个圆。、三角形的外接圆及外心:经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。注意:()三角形的外心是三角形三边的垂直平分线的交点;三角形的外心到三角形三个顶点的距离相等,任何三角形有且只有一个外接圆,任何一个圆有无数个内接三角形;()锐角三角形的外心在三角形的内部;直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半;钝角三角形的外心在三角形的外部。10、圆的内接四边形:如果一个四边形的各个顶点都在同一个圆上,这个四边形叫做圆的内接四边形,这个圆叫做这个四边形的外接圆。定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。注意:圆的内接平行四边形是矩形;圆的内接梯形是等腰梯形。11、直线与圆的位置关系:相交、相切、相离。()直线和圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线;()直线和圆有唯一公共点时,叫做直线与圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点;()直线和圆没有公共点时,叫做直线与圆相离。若的半径为,圆心到直线的距离为,则直线与圆的位置关系、交点个数及与的数量关系如下表:直线与圆的位置关系相离相切相交交点个数与数量关系注意:可以根据圆心到直线的距离与圆的半径的大小比较来判定直线与圆的位置关系。12、切线的判定与性质:()切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线必须满足两个条件:经过半径的外端;垂直于这条半径。两个条件缺一不可。注意:在判定直线与圆相切时,若直线与圆的公共点已知,证题方法是“连半径,证垂直”;若直线与圆的公共点未知,证题方法是作垂线,证半径。这两种情况可概括为一句话:“有点连半径,无点作垂线”。()切线的性质定理:圆的切线垂直于经过切点的半径。推论:经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心。注意:圆的切线性质定理与它的两个推论涉及了一条直线的三条性质:垂直于切线;过圆心;过切点。如果一条直线满足以上三个条件中的任意两个,那它一定满足另外一个条件,也可以简单地理解为“二推一”。13、三角形的内切圆和内心:()定义:与三角形三边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。()性质:三角形的内心是三角形三内角的角平分线的交点,三角形的内心到三角形三边的距离相等。注意:任意三角形有且只有一个内切圆,内心一定在三角形内,任意一个圆有无数个外切三角形;如果三角形三边长分别为、,内切圆半径为r,则三角形的面积()。14、切线长定理:()定义:在经过圆外一点的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。()定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。注意:圆的外切四边形的两组对边的和相等。15、圆与圆的位置关系:在平面内,两圆做相对运动,可以得到下面不同的位置关系:()两圆外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部;()两圆外切:两圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部;()两圆相交:两圆有两个公共点;()两圆内切:两圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部;()两圆内含:两圆没有公共点,并且一个圆上的点都在另一个圆的内部;()同心圆:两圆同心是两圆内含的一种特例。、两圆的位置关系、数量关系及识别方法:设两圆的半径分别为和,圆心距(圆心之间的距离)为。位置关系公共点个数、与的关系公切线条数外离外切相交内切内含注意:(1)上表中,两圆内含时,如果,则来那个圆同心,这是内含的一种特殊情况;()上表中的形与数、数与数均可作等价转换;()两圆公共点个数为时要分内含与外离两种情况;两圆公共点个数为时要分内切与外切两种情况。17、两圆相交的性质:相交两圆的连心线垂直平方两圆的公共弦。注意:在题目的已知条件中,若有“两圆相交”的条件时,常常作两圆的公共弦,通过公共弦使之出现同弧上的圆周角或构成圆内接四边形进而沟通两圆中角之间的关系。18、两圆相切的性质:如果两圆相切,那么切点一定在连心线上。注意:在题目已知条件中,若有“两圆相切”的条件时,经常过切点作两圆的公切线,这样通过弦切角沟通两圆中角之间的关系。19、弧长的计算:()圆周长公式:(为圆的半径)()弧长公式:2Rn/360=Rn/180(为弧所对的圆心角度数,不带单位,为圆的半径)20、扇形面积的计算:()扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。()圆的面积公式:2(为圆的半径)()扇形的面积公式:扇形(为扇形所在圆的半径,为扇形的弧长)注意:在运用扇形的面积公式时,应注意以下几点:()公式中的与弧长公式中的一样,表示的圆心角的倍数,不带单位;()扇形面积公式扇形与内切圆中的三角形面积公式十分类似;()根据扇形面积公式及弧长公式,已知扇形、四个量中的任意两个量都可以求出另外两个量。21、圆锥的侧面积与全面积:()圆锥的有关概念:圆锥是由一个底面和一个侧面组成的。我们把圆锥底面圆周长上任意一点与圆锥顶点的连线叫做圆锥的母线,连结顶点与底面圆心的线段叫做圆锥的高。()圆锥的侧面展开图:沿着圆锥的母线可把圆锥的侧面展开,圆锥的侧面积展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长。()圆锥的侧面积和全面积公式:圆锥的侧面积就是弧长为圆锥底面圆的周长,半径为圆锥的一条母线长的扇形面积,其计算公式为:侧;而圆锥的全面积就是它的侧面积与它的底面积之和,其计算公式为:全侧底2()。特别提醒:在计算圆锥的侧面积时,要注意各字母之间的对应关系,千万不可错把圆锥底面圆的半径等同于扇形半径或把圆锥母线长当做扇形的弧长。22、圆柱的侧面展开图:把圆柱的侧面沿它的一条母线剪开,展在一个平面上,即得到圆柱的侧面展开图,这个展开图是矩形,矩形的一边长等于圆柱的高,即圆柱的母线长,另一边是底面圆的周长。圆柱的侧面积等于底面圆的周长乘以圆柱的高,圆柱的全面积等于侧面和两个底面圆的面积之和,即侧,全侧圆()。23、正多边形的定义及有关概念:()正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。当时,这个正多边形就叫做正边形。()正多边形中的有关概念:正多边形的外接圆或内切圆的圆心叫做正多边形的中心;外接圆的半径叫做正多边形的半径;中心到正多边形一边的距离叫做正多边形的边心距;正多边形每一边所对的圆心角叫做正多边形的中心角,每个中心角等于;任何一个正多边形的中心角都等于外角,等于;外接圆的半径叫做正多边形的半径,用表示;内切圆的半径叫做正多边形的边心距,用表示。24、正多边形和圆的关系:把一个圆分成相等的一些弧,就可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京中医药大学翰林学院《定性数据分析》2023-2024学年第二学期期末试卷
- 山东工艺美术学院《操作系统原理实验课》2023-2024学年第二学期期末试卷
- 九江学院《民舞-运动舞蹈剧目排练与实践》2023-2024学年第二学期期末试卷
- 山东省淄博市临淄区2024-2025学年三年级数学第二学期期末联考模拟试题含解析
- 绵阳城市学院《医学影像成像原理》2023-2024学年第二学期期末试卷
- 四川护理职业学院《高分子物理B》2023-2024学年第二学期期末试卷
- 铁路冬季四防安全培训
- 2025水质检测技术服务合同
- 2025年高考历史历史问答题5种公式法5种记忆法汇编
- 2025建筑工程施工合同范本2
- 2024年全国统一高考历史试卷(广东卷)含答案
- B江水利枢纽工程毕业设计计算书
- YYT 0661-2017 外科植入物 半结晶型聚丙交酯聚合物和共聚物树脂
- 2024海南中考化学二轮重点专题突破 专题三 流程图题(课件)
- 欧派购货合同范本
- 沉井施工合同模板
- 急性冠脉综合征患者健康教育
- 信用修复申请书模板
- HG-T 2006-2022 热固性和热塑性粉末涂料
- DZ∕T 0383-2021 固体矿产勘查三维地质建模技术要求(正式版)
- 2024年全国初中数学竞赛试题含答案
评论
0/150
提交评论