全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
alwahip 2011Lectures in Numerical Analysis MethodsBushra H. AliwiDepartment of MathematicsBABYLON UNIVERSITYbushra_Course for year 2011Solution of Ordinary Differential Equations: Some equations has an analytical solution,while other has not such ;There are two types of conditions for the ordinary differential equations which are ; Initial Value Problem:Conditions are specified at only one value of the independent variable Analytically can solve ; with form; where and Both initial conditions have been specified at . An ordinary differential equation of order required conditions to be specified . Boundary Value Problem:Conditions are specified at two values of independent variable, such form ; where , Or where , , , and Methods of Solution: 1. Direct method using Taylar Series .2. One step method (self starting method):- solution is carried from to .3. Multistep method ;required information for . One Step Method (Self Starting Method):- I. Euler Method ; Consider the 1st order initial value problem; , replacing by forward difference; where then ; ,or can written as; we can use only two terms from Tayler Series II. Modified Euler Method ; The accuracy of method (I) can be implemented if better approximation is used for the derivative ; In each step we first calculate (by Euler Method); And then find new value as; ,or formed as ; This method is also known as Predictor_Correction Method ,because in each step we first calculate (by Euler Method) and then correct it .Same expression can obtained by using Tayler Series if 2nd derivative is approximated by forward differences ; where so ; III. Runge_Kutta Method ; The 4th order formula given as; Where ; Euler and Modified Euler are in reality 1st and 2nd order Runge_Kutta Method .The method requires four evaluation off to get more accurate results and the step size should be sufficiently small Example: Solve the differential equation ; , , by ; (1) Euler Method (2) Modified Euler Method (3) Ruge_Kutta Method ,also find on using Solution: (1) Euler Method; (2) Modified Euler Method ; (3) Ruge_Kutta Method; So the value of through the law calculated as; Then the table of calculating for in closed interval through this three methods as;byEulerby Modified Eulerby Runge_KuttaExact valuefor 011211.22211.22210.21.4421.49231.49771.49770.31.73841.82841.84321.8432Exercises:1. Solve to find
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年LTE知识题库及完整答案【网校专用】
- 法律顾问岗位面试题目与法律知识要点
- 2025年新疆师范高等专科学校辅导员考试笔试真题汇编附答案
- 2026中国科协所属单位招聘应届高校毕业生33人笔试考试参考题库及答案解析
- 2025年度吉林省市州级以上机关公开遴选公务员备考题库附答案
- 2026年中级银行从业资格之中级个人理财考试题库500道【有一套】
- 2026年安全员考试题库300道【名校卷】
- 河北省邢台市2025年九年级上学期语文期末试卷附答案
- 2025年郑州美术学院辅导员考试参考题库附答案
- 2024年池州职业技术学院马克思主义基本原理概论期末考试题带答案
- 机电产品三维设计 课件 项目4.14.2.1~3扭尾机械手
- 2025考评员培训考试题(含答案)
- 医院党建与医疗质量提升的融合策略
- 2025年聊城交运集团汽车站招聘工作人员(3人)参考笔试试题及答案解析
- 2025西部机场集团航空物流有限公司招聘参考考点题库及答案解析
- 2025海南三亚市直属学校赴高校面向2026年应届毕业生招聘教师111人(第5号)考试笔试参考题库附答案解析
- 2025中央广播电视总台招聘144人(公共基础知识)综合能力测试题附答案解析
- 严格执行管理制度(3篇)
- 支气管哮喘常见症状及护理技术培训
- 2025年广东省常用非金属材料检测技术培训考核考前冲刺必会500题-含答案
- 2025年德语游戏客服面试题库及答案
评论
0/150
提交评论