已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华容区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知定义域为的偶函数满足对任意的,有,且当时,.若函数在上至少有三个零点,则实数的取值范围是( )111A B C D2 方程x2+2ax+y2=0(a0)表示的圆( )A关于x轴对称B关于y轴对称C关于直线y=x轴对称D关于直线y=x轴对称3 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.4 在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m5 设函数f(x)=,f(2)+f(log210)=( )A11B8C5D26 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD7 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D28 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D69 在等差数列an中,a1+a2+a3=24,a10+a11+a12=78,则此数列前12项和等于( )A96B108C204D21610若抛物线y2=2px的焦点与双曲线=1的右焦点重合,则p的值为( )A2B2C4D411阅读下面的程序框图,则输出的S=( )A14B20C30D5512某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种二、填空题13设函数,若恰有2个零点,则实数的取值范围是 14如图所示,在三棱锥CABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角是15若与共线,则y=16从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为17已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=18已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位:)三、解答题19已知p:2x23x+10,q:x2(2a+1)x+a(a+1)0(1)若a=,且pq为真,求实数x的取值范围(2)若p是q的充分不必要条件,求实数a的取值范围20一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.21已知圆C:(x1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程22(本题满分15分)已知抛物线的方程为,点在抛物线上(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线,分别交直线于,两点,求最小时直线的方程【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23(本小题满分12分)已知函数()(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;24(本小题满分12分)已知圆与圆:关于直线对称,且点在圆上.(1)判断圆与圆的位置关系; (2)设为圆上任意一点,三点不共线,为的平分线,且交于. 求证:与的面积之比为定值.华容区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:,令,则,是定义在上的偶函数,则函数是定义在上的,周期为的偶函数,又当时,令,则与在的部分图象如下图,在上至少有三个零点可化为与的图象在上至少有三个交点,在上单调递减,则,解得:故选A考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围. 2 【答案】A【解析】解:方程x2+2ax+y2=0(a0)可化为(x+a)2+y2=a2,圆心为(a,0),方程x2+2ax+y2=0(a0)表示的圆关于x轴对称,故选:A【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键3 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.4 【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题5 【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用6 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A7 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题8 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题9 【答案】B【解析】解:在等差数列an中,a1+a2+a3=24,a10+a11+a12=78,3a2=24,3a11=78,解得a2=8,a11=26,此数列前12项和=618=108,故选B【点评】本题考查了等差数列的前n项和公式,以及等差数列的性质,属于基础题10【答案】D【解析】解:双曲线=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),=2,p=4故选D【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题11【答案】C【解析】解:S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=54退出循环,故答案为C【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题12【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法二、填空题13【答案】【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对于轴的交点个数进行分情况讨论,特别注意:1.在时也轴有一个交点式,还需且;2. 当时,与轴无交点,但中和,两交点横坐标均满足.14【答案】30 【解析】解:取AD的中点G,连接EG,GF则EGDC=2,GFAB=1,故GEF即为EF与CD所成的角又FEABFEGF在RtEFG中EG=2,GF=1故GEF=30故答案为:30【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了15【答案】6 【解析】解:若与共线,则2y3(4)=0解得y=6故答案为:6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键16【答案】 【解析】解:设大小正方形的边长分别为x,y,(x,y0)则+x+y+=3+,化为:x+y=3则x2+y2=,当且仅当x=y=时取等号这两个正方形的面积之和的最小值为故答案为:17【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出18【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:三、解答题19【答案】 【解析】解:p:,q:axa+1;(1)若a=,则q:;pq为真,p,q都为真;,;实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;,;实数a的取值范围为【点评】考查解一元二次不等式,pq真假和p,q真假的关系,以及充分不必要条件的概念20【答案】(1)小时;(2)【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.在中,.由余弦定理得:,所以,化简得,解得或(舍去).所以,海难搜救艇追上客轮所需时间为小时.(2)由,.在中,由正弦定理得.所以角的正弦值为.考点:三角形的实际应用【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键21【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x1),即2xy2=0(2)当弦AB被点P平分时,lPC,直线l的方程为,即x+2y6=0 22【答案】(1);(2)【解析】(1)点在抛物线上,2分即抛物线的方程为;5分 23【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力(2)当时,假设存在实数,使有最小值3,7分当时,在上单调递减,(舍去)8分当时,在上单调递减,在上单调递增,满足条件10分当时,在上单调递减,(舍去),11分综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建设工程施工合同:住宅小区改造
- 曲艺演员经纪代理合同
- 体育馆建设劳务合同模板
- 办公楼楼面防水施工合同
- 油田作业监控摄像头安装合同
- 烟草种植园产品销售合同
- 城市桥梁周边道路标线改造合同
- 新教材2025版高中历史第七单元两次世界大战十月革命与国际秩序的演变第14课第一次世界大战与战后国际秩序学案部编版必修中外历史纲要下
- 博物馆消防泵房施工合同
- 质量保证协议书珠宝设计公司
- 义务教育语文课程标准(2022)测试题带答案(20套)
- GB/T 23794-2023企业信用评价指标
- 电缆桥架施工方案
- 吊车吊装专项施工方案
- 小学生大队委竞选笔试题库
- 烤烟种植心得体会
- YY/T 0471.6-2004接触性创面敷料试验方法 第6部分:气味控制
- 工程征地移民实物指标调查工作程序
- 医学英语 皮肤系统Skin#
- 胶囊内镜的临床与应用
- 第四单元综合性学习《少年正是读书时》课件(共26张PPT) 部编版语文七年级上册
评论
0/150
提交评论