已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杭锦后旗高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知,则fff(2)的值为( )A0B2C4D82 中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.3 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日4 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x5 若关于的不等式的解集为或,则的取值为( )A B C D6 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a17 已知lga+lgb=0,函数f(x)=ax与函数g(x)=logbx的图象可能是( )ABCD8 设命题p:函数y=sin(2x+)的图象向左平移个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x1|在1,+)上是增函数则下列判断错误的是( )Ap为假Bq为真Cpq为真Dpq为假9 已知等差数列an中,a6+a8=16,a4=1,则a10的值是( )A15B30C31D6410已知,则方程的根的个数是( ) A3个B4个 C5个D6个 11下列函数在(0,+)上是增函数的是( )ABy=2x+5Cy=lnxDy=12等差数列an中,已知前15项的和S15=45,则a8等于( )AB6CD3二、填空题13如图:直三棱柱ABCABC的体积为V,点P、Q分别在侧棱AA和CC上,AP=CQ,则四棱锥BAPQC的体积为14设满足条件,若有最小值,则的取值范围为 15如图所示22方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有种(用数字作答)ABCD16用“”或“”号填空:30.830.717若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是18(2)7的展开式中,x2的系数是三、解答题19如图,在四棱锥PABCD中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点,求证:(1)直线EF平面PCD;(2)平面BEF平面PAD20已知集合P=x|2x23x+10,Q=x|(xa)(xa1)0(1)若a=1,求PQ;(2)若xP是xQ的充分条件,求实数a的取值范围21A1B1C1DD1CBAEF(本题满分12分)如图所示,在正方体ABCDA1B1C1D1中, E、F分别是棱DD1 、C1D1的中点. (1)求直线BE和平面ABB1A1所成角的正弦值; (2)证明:B1F平面A1BE22(本小题满分12分)设,满足(1)求的值;(2)求的值23已知函数f(x)=的定义域为A,集合B是不等式x2(2a+1)x+a2+a0的解集() 求A,B;() 若AB=B,求实数a的取值范围24某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下)()体育成绩大于或等于70分的学生常被称为“体育良好”已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;()为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;()假设甲、乙、丙三人的体育成绩分别为,且分别在,三组中,其中当数据的方差最大时,写出的值(结论不要求证明)(注:,其中为数据的平均数)杭锦后旗高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C2 【答案】A.【解析】在中,故是充分必要条件,故选A.3 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础4 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题5 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选D.考点:不等式与方程的关系.6 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题7 【答案】B【解析】解:lga+lgb=0ab=1则b=从而g(x)=logbx=logax,f(x)=ax与函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B8 【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x1|在1,0上是减函数,在0,+)上是增函数故命题q为假命题;则q为真命题;pq为假命题;pq为假命题,故只有C判断错误,故选:C9 【答案】A【解析】解:等差数列an,a6+a8=a4+a10,即16=1+a10,a10=15,故选:A10【答案】C【解析】由,设f(A)=2,则f(x)=A,则,则A=4或A=,作出f(x)的图像,由数型结合,当A=时3个根,A=4时有两个交点,所以的根的个数是5个。11【答案】C【解析】解:对于A,函数y=在(,+)上是减函数,不满足题意;对于B,函数y=2x+5在(,+)上是减函数,不满足题意;对于C,函数y=lnx在(0,+)上是增函数,满足题意;对于D,函数y=在(0,+)上是减函数,不满足题意故选:C【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目12【答案】D【解析】解:由等差数列的性质可得:S15=15a8=45,则a8=3故选:D二、填空题13【答案】V【解析】【分析】四棱锥BAPQC的体积,底面面积是侧面ACCA的一半,B到侧面的距离是常数,求解即可【解答】解:由于四棱锥BAPQC的底面面积是侧面ACCA的一半,不妨把P移到A,Q移到C,所求四棱锥BAPQC的体积,转化为三棱锥AABC体积,就是:故答案为:14【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,15【答案】27 【解析】解:若A方格填3,则排法有232=18种,若A方格填2,则排法有132=9种,根据分类计数原理,所以不同的填法有18+9=27种故答案为:27【点评】本题考查了分类计数原理,如何分类是关键,属于基础题16【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题17【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题18【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:280三、解答题19【答案】 【解析】证明:(1)在PAD中,因为E,F分别为AP,AD的中点,所以EFPD又因为EF不在平面PCD中,PD平面PCD所以直线EF平面PCD(2)连接BD因为AB=AD,BAD=60所以ABD为正三角形因为F是AD的中点,所以BFAD因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCD=AD,所以BF平面PAD又因为BF平面EBF,所以平面BEF平面PAD【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型20【答案】 【解析】解:(1)当a=1时,Q=x|(x1)(x2)0=x|1x2则PQ=1(2)aa+1,Q=x|(xa)(xa1)0=x|axa+1xP是xQ的充分条件,PQ,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型21【答案】解:(1)设G是AA1的中点,连接GE,BGE为DD1的中点,ABCDA1B1C1D1为正方体,GEAD,又AD平面ABB1A1,GE平面ABB1A1,且斜线BE在平面ABB1A1内的射影为BG,RtBEG中的EBG是直线BE和平面ABB1A1所成角,即EBG=设正方体的棱长为,直线BE和平面ABB1A1所成角的正弦值为:;6分(2)证明:连接EF、AB1、C1D,记AB1与A1B的交点为H,连接EHH为AB1的中点,且B1H=C1D,B1HC1D,而EF=C1D,EFC1D,B1HEF且B1H=EF,四边形B1FEH为平行四边形,即B1FEH,又B1F平面A1BE且EH平面A1BE,B1F平面A1BE 12分22【答案】(1);(2)【解析】试题分析:(1)由 ,又;(2)由(1)可得试题解析:(1),3分,6分(2)由(1)可得8分,10分12分考点:三角恒等变换23【答案】 【解析】解:(),化为(x2)(x+1)0,解得x2或x1,函数f(x)=的定义域A=(,1)(2,+);由不等式x2(2a+1)x+a2+a0化为(xa)(xa1)0,又a+1a,xa+1或xa,不等式x2(2a+1)x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年土地使用权转让合同(含开发权)
- 2024年广西路分公司一级干线租用合同
- 2024年安全监控外包服务合同
- 2024年工程设计变更合同补充
- 2024年度石油化工设备安装调试合同
- 2024年工厂租赁合同书
- 2024年度塔吊设计研发合同
- 2024购房合同应注意事项
- 2024征地补偿安置合同范本
- 2024年学校治安门卫合同
- GB/T 16475-2008变形铝及铝合金状态代号
- GB/T 13611-2018城镇燃气分类和基本特性
- 融资担保机构担保代偿管理指引
- GB 20664-2006有色金属矿产品的天然放射性限值
- FZ/T 93074-2011熔喷法非织造布生产联合机
- 高中生物课程标准2022
- 引发火灾的原因课件
- 汽车点火系实训项目
- 注氮机司机讲义
- 传播学概论课件新版
- 内蒙古伊利实业集团股份有限公司员工奖惩制度
评论
0/150
提交评论