已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华莹市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大2 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D83 函数g(x)是偶函数,函数f(x)=g(xm),若存在(,),使f(sin)=f(cos),则实数m的取值范围是( )A()B(,C()D(4 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1205 已知集合A=x|1x3,B=x|0xa,若AB,则实数a的范围是( )A3,+)B(3,+)C,3D,3)6 已知A=4,2a1,a2,B=a5,1a,9,且AB=9,则a的值是( )Aa=3Ba=3Ca=3Da=5或a=37 函数(,)的部分图象如图所示,则 f (0)的值为( )A. B.C. D. 【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.8 在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m9 在中,则的取值范围是( )1111A B C. D10特称命题“xR,使x2+10”的否定可以写成( )A若xR,则x2+10BxR,x2+10CxR,x2+10DxR,x2+1011已知全集,集合,集合,则集合为( ) A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.12已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若,则双曲线的离心率等于( )A B C D二、填空题13阅读下图所示的程序框图,运行相应的程序,输出的的值等于_. 14在ABC中,则_15(sinx+1)dx的值为16i是虚数单位,若复数(12i)(a+i)是纯虚数,则实数a的值为17圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为18已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=三、解答题19在四棱锥EABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC底面ABCD,F为BE的中点()求证:DE平面ACF;()求证:BDAE20(本题满分15分)已知抛物线的方程为,点在抛物线上(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线,分别交直线于,两点,求最小时直线的方程【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.21已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 22设圆C满足三个条件过原点;圆心在y=x上;截y轴所得的弦长为4,求圆C的方程23已知椭圆C: +=1(ab0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点()求椭圆C的方程;()求F2PQ面积的最小值24在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?华莹市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】第2 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力3 【答案】A【解析】解:函数g(x)是偶函数,函数f(x)=g(xm),函数f(x)关于x=m对称,若(,),则sincos,则由f(sin)=f(cos),则=m,即m=(sin+cos)=sin(+)当(,),则+(,),则sin(+),则m,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键4 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C5 【答案】B【解析】解:集合A=x|1x3,B=x|0xa,若AB,则a3,故选:B【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题6 【答案】B【解析】解:A=4,2a1,a2,B=a5,1a,9,且AB=9,2a1=9或a2=9,当2a1=9时,a=5,AB=4,9,不符合题意;当a2=9时,a=3,若a=3,集合B违背互异性;a=3故选:B【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题7 【答案】D【解析】易知周期,.由(),得(),可得,所以,则,故选D.8 【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题9 【答案】C【解析】考点:三角形中正余弦定理的运用.10【答案】D【解析】解:命题“xR,使x2+10”是特称命题否定命题为:xR,都有x2+10故选D11【答案】C.【解析】由题意得,故选C.12【答案】C【解析】试题分析:设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,且不妨设,由,得,又,由余弦定理可知:,设双曲线的离心率为,则,解得.故答案选C考点:椭圆的简单性质【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由为公共点,可把焦半径、的长度用椭圆的半长轴以及双曲线的半实轴来表示,接着用余弦定理表示,成为一个关于以及的齐次式,等式两边同时除以,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.二、填空题13【答案】 【解析】解析:本题考查程序框图中的循环结构第1次运行后,;第2次运行后,;第3次运行后,;第4次运行后,;第5次运行后,此时跳出循环,输出结果程序结束14【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:215【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:216【答案】2 【解析】解:由(12i)(a+i)=(a+2)+(12a)i为纯虚数,得,解得:a=2故答案为:217【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=518【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题三、解答题19【答案】【解析】【分析】()连接FO,则OF为BDE的中位线,从而DEOF,由此能证明DE平面ACF()推导出BDAC,ECBD,从而BD平面ACE,由此能证明BDAE【解答】证明:()连接FO,底面ABCD是正方形,且O为对角线AC和BD交点,O为BD的中点,又F为BE中点,OF为BDE的中位线,即DEOF,又OF平面ACF,DE平面ACF,DE平面ACF()底面ABCD为正方形,BDAC,EC平面ABCD,ECBD,BD平面ACE,BDAE20【答案】(1);(2)【解析】(1)点在抛物线上,2分即抛物线的方程为;5分 21【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 22【答案】 【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,与y轴截取的弦OA=4,OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x2)2+(y2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OBC2D为正方形,与y轴截取的弦OA=4,OB=C2D,=OD=C2B=2,即圆心C2(2,2),在直角三角形ABC2中,根据勾股定理得:AC2=2,则圆C1方程为:(x+2)2+(y+2)2=8,圆C的方程为:(x2)2+(y2)2=8或(x+2)2+(y+2)2=8【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题23【答案】 【解析】解:()椭圆C: +=1(ab0)的短轴长为2,且离心率e=,解得a2=4,b2=3,椭圆C的方程为=1()设直线MN的方程为x=ty+1,(),代入椭圆,化简,得(3t2+4)y2+6ty9=0,设M(x1,y1),N(x2,y2),又F1(1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),=|=15|=180|,令=1,),则=180,y=在1,)上是增函数,当=1时,即t=0时,()min=【点评】本题考查椭圆方程的求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚后财产继承协议书
- 环保项目利益相关方参与制度
- 2024-2030年中国蔬菜种子行业发展方向规模分析报告
- 2024-2030年中国营养辅食电商行业运营模式及发展策略分析报告
- 2024-2030年中国脚轮行业供需趋势及投资策略研究报告
- 2024-2030年中国紫草素行业营销动态与供需前景预测报告
- 2024-2030年中国磁力泵行业供需形势及投资策略建议报告
- 2024-2030年中国碎纸机行业市场占有率及未来发展策略分析报告
- 2024-2030年中国硅藻土精细行业市场十三五需求预测及投资可行性分析报告
- 2024-2030年中国矿物棉产业发展形势分析及投资策略研究报告
- 电泳-厚-度-检-测-记录
- 服务采购询比价表
- 卫生院会议制度
- 小学 四年级 体育水平二 基本运动技能平衡篇 课件
- 巧克力简介课件
- 初中语文人教七年级上册要拿我当一挺机关枪使用
- 北京颂歌原版五线谱钢琴谱正谱乐谱
- PSUR模板仅供参考
- 火力发电企业作业活动风险分级管控清单(参考)
- 民法典合同编之保证合同实务解读PPT
- 全国第四轮学科评估PPT幻灯片课件(PPT 24页)
评论
0/150
提交评论