井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合,则( )A. B. C. D. 【命题意图】本题主要考查集合的概念与运算,属容易题.2 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )Ak7Bk6Ck5Dk43 已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或34 以下四个命题中,真命题的是( ) A B“对任意的,”的否定是“存在, C,函数都不是偶函数 D已知,表示两条不同的直线,表示不同的平面,并且,则“”是 “”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力5 已知集合A=0,1,2,则集合B=xy|xA,yA中元素的个数是( )A1B3C5D96 已知全集I=1,2,3,4,5,6,A=1,2,3,4,B=3,4,5,6,那么I(AB)等于( )A3,4B1,2,5,6C1,2,3,4,5,6D7 设是等差数列的前项和,若,则( )A1 B2 C3 D48 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD9 已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为,则直线的方程为( ) A B C D10设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D11设D为ABC所在平面内一点,则( )ABCD12设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A3a2B6a2C12a2D24a2二、填空题13复数z=(i虚数单位)在复平面上对应的点到原点的距离为14已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 15设满足条件,若有最小值,则的取值范围为 16【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_17若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是18在矩形ABCD中,=(1,3),则实数k=三、解答题19(本题满分15分)如图,已知长方形中,为的中点,将沿折起,使得平面平面(1)求证:;(2)若,当二面角大小为时,求的值【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力20对于定义域为D的函数y=f(x),如果存在区间m,nD,同时满足:f(x)在m,n内是单调函数;当定义域是m,n时,f(x)的值域也是m,n则称m,n是该函数的“和谐区间”(1)证明:0,1是函数y=f(x)=x2的一个“和谐区间”(2)求证:函数不存在“和谐区间”(3)已知:函数(aR,a0)有“和谐区间”m,n,当a变化时,求出nm的最大值 21已知集合P=x|2x23x+10,Q=x|(xa)(xa1)0(1)若a=1,求PQ;(2)若xP是xQ的充分条件,求实数a的取值范围22如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,AD=DC=AP=2,AB=1,点E为棱PC的中点()证明:BEDC;()求直线BE与平面PBD所成角的正弦值;()若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值23已知an为等比数列,a1=1,a6=243Sn为等差数列bn的前n项和,b1=3,S5=35(1)求an和Bn的通项公式;(2)设Tn=a1b1+a2b2+anbn,求Tn24已知、是三个平面,且,且求证:、三线共点井冈山市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】易知,所以,故选B.2 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k5?故答案选C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误3 【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A4 【答案】D5 【答案】C【解析】解:A=0,1,2,B=xy|xA,yA,当x=0,y分别取0,1,2时,xy的值分别为0,1,2;当x=1,y分别取0,1,2时,xy的值分别为1,0,1;当x=2,y分别取0,1,2时,xy的值分别为2,1,0;B=2,1,0,1,2,集合B=xy|xA,yA中元素的个数是5个故选C6 【答案】B【解析】解:A=1,2,3,4,B=3,4,5,6,AB=3,4,全集I=1,2,3,4,5,6,I(AB)=1,2,5,6,故选B【点评】本题考查交、并、补集的混合运算,是基础题解题时要认真审题,仔细解答,注意合理地进行等价转化7 【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和8 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题9 【答案】D 【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即,选D10【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 11【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为12【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4R2=6a2故选B二、填空题13【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力14【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题15【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,16【答案】【解析】17【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题18【答案】4 【解析】解:如图所示,在矩形ABCD中,=(1,3),=(k1,2+3)=(k1,1),=1(k1)+(3)1=0,解得k=4故答案为:4【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目三、解答题19【答案】(1)详见解析;(2).【解析】(1)由于,则, 又平面平面,平面平面,平面,平面,3分又平面,有;6分20【答案】 【解析】解:(1)y=x2在区间0,1上单调递增又f(0)=0,f(1)=1,值域为0,1,区间0,1是y=f(x)=x2的一个“和谐区间”(2)设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数在m,n上单调递增若m,n是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根x23x+5=0无实数根,函数不存在“和谐区间”(3)设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数在m,n上单调递增若m,n是已知函数的“和谐区间”,则故m、n是方程,即a2x2(a2+a)x+1=0的同号的相异实数根,m,n同号,只须=a2(a+3)(a1)0,即a1或a3时,已知函数有“和谐区间”m,n,当a=3时,nm取最大值 21【答案】 【解析】解:(1)当a=1时,Q=x|(x1)(x2)0=x|1x2则PQ=1(2)aa+1,Q=x|(xa)(xa1)0=x|axa+1xP是xQ的充分条件,PQ,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型22【答案】 【解析】证明:(I)PA底面ABCD,ADAB,以A为坐标原点,建立如图所示的空间直角坐标系,AD=DC=AP=2,AB=1,点E为棱PC的中点B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)=(0,1,1),=(2,0,0)=0,BEDC;()=(1,2,0),=(1,0,2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角满足:sin=,故直线BE与平面PBD所成角的正弦值为()=(1,2,0),=(2,2,2),=(2,2,0),由F点在棱PC上,设=(2,2,2)(01),故=+=(12,22,2)(01),由BFAC,得=2(12)+2(22)=0,解得=,即=(,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,3,1),取平面ABP的法向量=(0,1,0),则二面角FABP的平面角满足:cos=,故二面角FABP的余弦值为:【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论