九年级数学下册28.1锐角三角函数1测试卷.docx_第1页
九年级数学下册28.1锐角三角函数1测试卷.docx_第2页
九年级数学下册28.1锐角三角函数1测试卷.docx_第3页
九年级数学下册28.1锐角三角函数1测试卷.docx_第4页
九年级数学下册28.1锐角三角函数1测试卷.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

锐角三角函数 (满分100分,30分钟完成)学校:_姓名:_班级:_考号:_一、选择题(每题5分,共40分)1. 在RtABC中,C=90,a=4,b=3,则cosA的值是( )A B C D【答案】B【解析】试题分析:C=90,a=4,b=3,c=5,cosA=,故选B考点:1锐角三角函数的定义;2勾股定理 2.已知:在RtABC中,C=90,sinA=,则cosB的值为( )A B C D【答案】B【解析】试题分析:根据一个角的正弦等于它余角的余弦,可得答案在RtABC中,C=90得B+A=90由一个角的正弦等于它余角的余弦,得cosB=sinA=,故选:B考点:互余两角三角函数的关系3. 在RtABC中,C=90,a=4,b=3,则cosA的值是( )A B C D【答案】B【解析】试题分析:C=90,a=4,b=3,c=5,cosA=,故选B考点:1锐角三角函数的定义;2勾股定理 4. 在Rt中,若,则的值是( )A B C D【答案】B【解析】试题分析:C=90,A+B=90,cosB=sinA,sinA=,cosB=故选B考点:三角函数5在RtABC中,C=90,如果把RtABC的各边的长都缩小为原来的,则A的正切值( ).A缩小为原来的 B扩大为原来的4倍C缩小为原来的 D没有变化【答案】D.【解析】试题分析:根据题意得到锐角A的对边与邻边的比值不变,然后根据正切的定义可判断锐角A的正切值不变 在RtABC中,如果每个边都缩小为原来的,锐角A的对边与邻边的比值不变,锐角A的正切值不变故选:D考点:锐角三角函数的定义.6. 在 RtABC中,C90,AC8,BC6,则sinB的值等于( )A B C D【答案】D【解析】试题分析:由直角三角形的边角对应关系,根据勾股定理可求得AB=10,因此sinB=故选D考点:锐角三角函数 7. 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的正切值是( )A2 B C D【答案】D【解析】试题分析:根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案如图:,由勾股定理,得AC=,AB=2,BC=,ABC为直角三角形,tanB=,故选:D考点:锐角三角函数的定义;勾股定理;勾股定理的逆定理 8. 如图,在RtABC中,CD是斜边AB上的中线,已知CD2,AC3,则sinB的值是CABDA. B. C. D.【答案】C【解析】试题分析:在RtABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=4,则即可求得sinB的值试题解析:在RtABC中,CD是斜边AB上的中线,CD=2,AB=2CD=4sinB=故选C考点:1.锐角三角函数的定义;2.直角三角形斜边上的中线 二、填空题(每题6分,共30分)9. 等腰三角形的面积为24,底边长4,则底角的正切值为 。【答案】6【解析】试题分析:等腰三角形的面积为24,底边为4,设高为h,根据题意可得,h=12所以,底角的正切值=6,故答案为6考点:1等腰三角形的性质;2锐角三角形函数10. 如图,网格中的每个小正方形的边长都是1,ABC每个顶点都在格点上,则cosA= 【答案】【解析】试题分析:根据勾股定理,可得AC的长,根据余弦为邻边比斜边,可得答案如图,由勾股定理,得AC=5cosA=,故答案为:考点:锐角三角函数的定义;勾股定理11. 如图,在ABC中,ABAC5,BC8若BPCBAC,则tanBPC 【答案】.【解析】试题分析:如答图,过点A作AHBC于点H,AB=AC,AH平分BAC,且BH=BC=4.又BPC=BAC,BAH=BPC.tanBPC=tanBAH.在RtABH中,AB=5,BH=4,AH=3tanBAD=.tanBPC=.考点:1.等腰三角形的性质;2.锐角三角函数定义;3.转化思想的应用. 12. 如图,在ABC中,C=90,AC=2,BC=1,则tanA的值是 【答案】.【解析】试题分析:根据锐角三角函数的定义(tanA=)求出即可试题解析:tanA=考点:锐角三角函数的定义 13. 如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,点A、B、C、E也都在格点上,CB与O相交于点D,连接ED则AED的正弦值等于 【答案】【解析】试题分析:首先根据圆周角定理可知,AED=ACB,在RtACB中,根据锐角三角函数的定义求出ACB的正弦值AED和ABC所对的弧长都是,根据圆周角定理知,AED=ABC,在RtACB中,根据锐角三角函数的定义知,sinABC=,AC=1,AB=2,BC=,sinABC= ,AED的正弦值等于 ,故答案为 考点:锐角三角函数的定义;圆周角定理 三、解答题(每题15分,共30分)14. 某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25和60,且AB=4米,求该生命迹象所在位置C的深度(结果精确到1米,参考数据:sin250.4,cos250,9,tan250.5,1.7)【答案】3【解析】试题分析:过C点作AB的垂线交AB的延长线于点D,通过解RtADC得到AD=2CD=2x,在RtBDC中利用锐角三角函数的定义即可求出CD的值试题解析:作CDAB交AB延长线于D,设CD=x米在RtADC中,DAC=25,所以tan25=0.5,所以AD=2xRtBDC中,DBC=60,由tan 60=,解得:x3即生命迹象所在位置C的深度约为3米考点:解直角三角形的应用15. 某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72方向,距A船24海里的海域,C船位于A船的北偏东33方向,同时又位于B船的北偏东78方向(1)求ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点(结果精确到0.01小时)(参考数据:1.414,1.732)【答案】(1)30;(2)约0.57小时.【解析】试题分析:(1)根据两直线平行,同旁内角互补,即可得到DBA的度数,则ABC即可求得;(2)作AHBC于点H,分别在直角ABH和直角ACH中,利用三角函数求得BH和CH的长,则BC即可求得,进而求得时间试题解析:(1)BDAE,DBA+BA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论