




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
隐函数的求导法则 一、一个方程的情形 解 令 则 解 令 则 解令 则 思路 : 解令 则 整理得 整理得 整理得 二、方程组的情形 1、对于方程组 怎样求偏导数 首先应明确这个方程组确定了几个几元隐函数 当 x 给定以后相当于解含关于 y , z 的方程组 如果有解且唯一则对于不同的 x 就完全确定了y , z 故方程组确定了两个一元隐函数y=y(x),z=z(x) 若 则 怎样求两边对 x 求导 注意左边是复合函数(三个中间变量), 同理 2 、 解1直接代入公式; 解2运用公式推导的方法 , 将所给方程的两边对 求导并移项 将所给方程的两边对 y 求导,用同样方法得 注这组公式不太好记,具体做题时应 用的是其基本思想 关于隐函数求二阶偏导数 以为例, 主要有三种方法: 公式法 类似地可求得 直接法方程两边连续求导两次 解得: 两种方法相比,法二较简便,因为可避免 商的求导运算,尤其是在求指定点的二阶偏导数 时,毋须解出一阶偏导数而是将其具体数值代入 即可求得二阶偏导数,使运算大为简化。 则 这样一次就可求得全部的一阶偏导数。 全微分法 利用全微分形式不变性,在所给的方程两边直接 求全微分 三、小结 隐函数的求导法则 (分以下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 呼伦贝尔职业技术学院《数字造型艺术》2023-2024学年第一学期期末试卷
- 武汉交通职业学院《工程设计与分析》2023-2024学年第二学期期末试卷
- 漳州卫生职业学院《医用统计方法》2023-2024学年第二学期期末试卷
- 中南民族大学《职业民主管理》2023-2024学年第二学期期末试卷
- 浙江中考科学模拟试卷含答案(5份)
- 2025届天津市宁河区北淮淀镇中学初三年级开学摸底考试英语试题试卷含答案
- 开鲁县2025年三年级数学第二学期期末联考试题含解析
- 宿迁学院《水污染控制工程(二)》2023-2024学年第二学期期末试卷
- 宿迁泽达职业技术学院《教育美学:发现文艺作品中的教育学》2023-2024学年第二学期期末试卷
- 2024-2025学年吉林省汪清县四中高三(下)调研英语试题试卷含解析
- 第16课《有为有不为 》课件-2024-2025学年统编版语文七年级下册
- 火锅店创业计划书:营销策略
- 交通大数据分析-深度研究
- 基础护理学试题及标准答案
- DB11-T 1754-2024 老年人能力综合评估规范
- 招聘团队管理
- 【课件】用坐标描述简单几何图形+课件人教版七年级数学下册
- 电商运营岗位聘用合同样本
- 2023年浙江省杭州市上城区中考数学一模试卷
- 租赁钻杆合同范例
- 消毒管理办法
评论
0/150
提交评论