几个二次函数最值例题含答案.doc_第1页
几个二次函数最值例题含答案.doc_第2页
几个二次函数最值例题含答案.doc_第3页
几个二次函数最值例题含答案.doc_第4页
几个二次函数最值例题含答案.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一解答题(共6小题)1(2011成都)如图,在平面直角坐标系xOy中,ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上已知|OA|:|OB|=1:5,|OB|=|OC|,ABC的面积SABC=15,抛物线y=ax2+bx+c(a0)经过A、B、C三点(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由2(2011南充)抛物线y=ax2+bx+c与x轴的交点为A(m4,0)和B(m,0),与直线y=x+p相交于点A和点C(2m4,m6)(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当PQM的面积最大时,请求出PQM的最大面积及点M的坐标3(2013湖州校级模拟)已知,如图,二次函数y=ax2+2ax3a(a0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:y=+对称(1)A坐标为B坐标为;H坐标为;(2)求二次函数解析式;(3)在x轴上找一点P,使得|PAPH|最大,求P点坐标;(4)过点B作直线BKAH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值4(2014成都)如图,已知抛物线y=(x+2)(x4)(k为常数,且k0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=x+b与抛物线的另一交点为D(1)若点D的横坐标为5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?5(2013成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3),直角顶点B在第四象限(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由6(2012东莞)如图,抛物线y=x2x9与x轴交于A、B两点,与y轴交于点C,连接BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)参考答案与试题解析一解答题(共6小题)1(2011成都)如图,在平面直角坐标系xOy中,ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上已知|OA|:|OB|=1:5,|OB|=|OC|,ABC的面积SABC=15,抛物线y=ax2+bx+c(a0)经过A、B、C三点(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由【考点】二次函数综合题菁优网版权所有【专题】综合题;压轴题【分析】(1)由已知设OA=m,则OB=OC=5m,AB=6m,由SABC=ABOC=15,可求m的值,确定A、B、C三点坐标,由A、B两点坐标设抛物线交点式,将C点坐标代入即可;(2)设E点坐标为(m,m24m5),抛物线对称轴为x=2,根据2|m2|=EF,列方程求解;(3)存在因为OB=OC=5,OBC为等腰直角三角形,直线BC解析式为y=x5,则直线y=x+9或直线y=x19与BC的距离为7,将直线解析式与抛物线解析式联立,求M点的坐标即可【解答】解:(1)OA:OB=1:5,OB=OC,设OA=m,则OB=OC=5m,AB=6m,由SABC=ABOC=15,得6m5m=15,解得m=1(舍去负值),A(1,0),B(5,0),C(0,5),设抛物线解析式为y=a(x+1)(x5),将C点坐标代入,得a=1,抛物线解析式为y=(x+1)(x5),即y=x24x5;(2)设E点坐标为(n,n24n5),抛物线对称轴为x=2,由2(n2)=EF,得2(n2)=(n24n5)或2(n2)=n24n5,解得n=1或n=3,n0,n=1+或n=3+,边长EF=2(n2)=22或2+2;(3)存在由(1)可知OB=OC=5,OBC为等腰直角三角形,即B(5,0),C(0,5),设直线BC解析式为y=kx+b,将B与C代入得:,解得:,则直线BC解析式为y=x5,依题意MBC中BC边上的高为,直线y=x+9或直线y=x19与BC的距离为7,联立,解得或,M点的坐标为(2,7),(7,16)【点评】本题考查了二次函数的综合运用关键是采用形数结合的方法,准确地用点的坐标表示线段的长,根据图形的特点,列方程求解,注意分类讨论2(2011南充)抛物线y=ax2+bx+c与x轴的交点为A(m4,0)和B(m,0),与直线y=x+p相交于点A和点C(2m4,m6)(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当PQM的面积最大时,请求出PQM的最大面积及点M的坐标【考点】二次函数综合题;解二元一次方程组;二次函数的最值;待定系数法求二次函数解析式;平行四边形的性质菁优网版权所有【专题】计算题;代数几何综合题;压轴题【分析】(1)把点A(m4,0)和C(2m4,m6)代入直线y=x+p上得到方程组,求出方程组的解,得出A、B、C的坐标,设抛物线y=ax2+bx+c=a(x3)(x+1),把C(2,3)代入求出a即可;(2)AC所在直线的解析式为:y=x1,根据平行四边形ACQP的面积为12,求出AC边上的高为2,过点D作DKAC与PQ所在直线相交于点K,求出DK、DN,得到PQ的解析式为y=x+3或y=x5,求出方程组的解,即可得到P1(3,0),P2(2,5),根据ACQP是平行四边形,求出Q的坐标;同法求出以AC为对角线时P、Q的坐标;(3)设M(t,t22t3),(1t3),过点M作y轴的平行线,交PQ所在直线于点T,则T(t,t+3),求出MT=t2+t+6,过点M作MSPQ所在直线于点S,求出MS=(t)2+,即可得到答案【解答】解:(1)点A(m4,0)和C(2m4,m6)在直线y=x+p上,解得:,A(1,0),B(3,0),C(2,3),设抛物线y=ax2+bx+c=a(x3)(x+1),C(2,3),代入得:3=a(23)(2+1),a=1抛物线解析式为:y=x22x3答:抛物线解析式为y=x22x3(2)解:A(1,0),C(2,3),由勾股定理得:AC=3,AC所在直线的解析式为:y=x1,BAC=45,平行四边形ACQP的面积为12,平行四边形ACQP中AC边上的高为=2,过点D作DKAC与PQ所在直线相交于点K,DK=2,DN=4,四边形ACQP,PQ所在直线在直线ADC的两侧,可能各有一条,根据平移的性质得出直线PQ的解析式为y=x+3或y=x5,由得:,解得:或,由得:,方程组无解,即P1(3,0),P2(2,5),ACQP是平行四边形,A(1,0),C(2,3),当P(3,0)时,当以AC为边时,Q1(6,3),Q2(0,3),满足条件的P,Q点是P1(3,0),Q1(6,3)或P2(2,5),Q2(1,2);当P(2,5)时,当以AC为边时,Q3(1,2),Q4(5,8),以AC为对角线时,P到AC的距离是122(3)=2,过C作CRAC交x轴于R,则AC=CR=3,由勾股定理得:AR=6,则R的坐标是(5,0)过R作AC的平行线交抛物线于两点,则此直线的解析式是y=(x6)1=x+5,解方程组得:,即在AC的两旁各有一条直线,但当在AC下方时,直线和抛物线不能相交,此时P坐标是(,),Q坐标是(,)或P的坐标是(,)Q的坐标是(,)答:点P,Q的坐标是P1(3,0),Q1(6,3)或(0,3)或P2(2,5),Q2(1,2)或(5,8),或P3(,),Q3(,)或P4(,),Q4(,)(3)解:设M(t,t22t3),(1t3),过点M作y轴的平行线,交PQ所在直线于点T,则T(t,t+3),MT=(t+3)(t22t3)=t2+t+6,过点M作MSPQ所在直线于点S,MS=MT=(t2+t+6)=(t)2+,则当t=时,M(,),PQM中PQ边上高的最大值为,P1(3,0),Q1(6,3)或P2(2,5),Q2(1,2)当P(3,0),Q(6,3)时,PQ=3当P(2,5),Q(1,2)时,PQ=3,SPQM=PQ=答:PQM的最大面积是,点M的坐标是(,)【点评】本题主要考查对用待定系数法求二次函数的解析式,二次函数的最值,平行四边形的性质,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度3(2013湖州校级模拟)已知,如图,二次函数y=ax2+2ax3a(a0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:y=+对称(1)A坐标为(3,0)B坐标为(1,0);H坐标为(1,2);(2)求二次函数解析式;(3)在x轴上找一点P,使得|PAPH|最大,求P点坐标;(4)过点B作直线BKAH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值【考点】二次函数综合题菁优网版权所有【分析】(1)设A(x1,0),B(x2,0),根据交点和系数的关系得出,解得x1=3,x2=1,从而求得A(3,0),B(1,0),由直线l:y=+可知,tanOAC=,求得OC=,作HEAB于E,根据三角形中位线的性质求得H的纵坐标,根据A、B的坐标求得H的横坐标;(2)把H点的坐标代入y=ax2+2ax3a(a0),求得a的值即可;(3)根据|PAPH|AH,即可求得P和A重合,即可求得P的坐标;(4)根据待定系数法求出过A和H点的直线解析式,因为过点B作直线BKAH交直线l于K点,所以直线BK的斜率和直线AH的相等,又过B,所以可求出直线BK的解析式,再把直线l的解析式和BK的解析式联立,即可求出K的坐标,根据点H、B关于直线AK对称,得出HN+MN的最小值是MB,过点K作直线AH的对称点Q,连接QK,交直线AH于E,得到BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,由勾股定理得QB=8,即可得出答案【解答】解:(1)设A(x1,0),B(x2,0),解得x1=3,x2=1,A(3,0),B(1,0),由直线l:y=+可知,tanOAC=,OC=3=,作HEAB于E,如图1,OCHE,HC=BC,HE=2OC=2,=1,H(1,2);故答案为(3,0),(1,0),(1,2);(2)把H(1,2)代入y=ax2+2ax3a得,2=a2a3a,解得a=,二次函数解析式为y=x2x+;(3)|PAPH|AH,当P点和A点重合时|PAPH|最大,P(3,0);(4)设直线AH的解析式为y=kx+b,把A和H点的坐标代入求出k=,b=3,过点B作直线BKAH,直线BK的解析式为y=mx+n中的m=,又因为B在直线BK上,代入求出n=,直线BK的解析式为:y=x,联立,解得:,交点K的坐标是(3,2),则BK=4,点H、B关于直线AK对称,K(3,2),HN+MN的最小值是MB,KD=KE=2,过K作KDx轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,KD=KE=2,则QM=MK,QE=EK=2,AEQK,根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,BKAH,BKQ=HEQ=90,由勾股定理得QB=8,HN+NM+MK的最小值为8【点评】本题是二次函数的综合题,考查了二次函数与一元二次方程,二次函数与x轴的交点,用待定系数法求二次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度4(2014成都)如图,已知抛物线y=(x+2)(x4)(k为常数,且k0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=x+b与抛物线的另一交点为D(1)若点D的横坐标为5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【考点】二次函数综合题菁优网版权所有【专题】代数几何综合题;压轴题【分析】(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得k的值;(2)因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCPAB如答图2,按照以上两种情况进行分类讨论,分别计算;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF如答图3,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点【解答】解:(1)抛物线y=(x+2)(x4),令y=0,解得x=2或x=4,A(2,0),B(4,0)直线y=x+b经过点B(4,0),4+b=0,解得b=,直线BD解析式为:y=x+当x=5时,y=3,D(5,3)点D(5,3)在抛物线y=(x+2)(x4)上,(5+2)(54)=3,k=抛物线的函数表达式为:y=(x+2)(x4)(2)由抛物线解析式,令x=0,得y=k,C(0,k),OC=k因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCPAB若ABCAPB,则有BAC=PAB,如答图21所示设P(x,y),过点P作PNx轴于点N,则ON=x,PN=ytanBAC=tanPAB,即:,y=x+kP(x,x+k),代入抛物线解析式y=(x+2)(x4),得(x+2)(x4)=x+k,整理得:x26x16=0,解得:x=8或x=2(与点A重合,舍去),P(8,5k)ABCAPB,即,解得:k=若ABCPAB,则有ABC=PAB,如答图22所示与同理,可求得:k=综上所述,k=或k=(3)如答图3,由(1)知:D(5,3),如答图22,过点D作DNx轴于点N,则DN=3,ON=5,BN=4+5=9,tanDBA=,DBA=30过点D作DKx轴,则KDF=DBA=30过点F作FGDK于点G,则FG=DF由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,t=AF+FG,即运动的时间值等于折线AF+FG的长度值由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段过点A作AHDK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点A点横坐标为2,直线BD解析式为:y=x+,y=(2)+=2,F(2,2)综上所述,当点F坐标为(2,2)时,点M在整个运动过程中用时最少【点评】本题是二次函数压轴题,难度很大第(2)问中需要分类讨论,避免漏解;在计算过程中,解析式中含有未知数k,增加了计算的难度,注意解题过程中的技巧;第(3)问中,运用了转化思想使得试题难度大大降低,需要认真体会5(2013成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3),直角顶点B在第四象限(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础若MPQ为等腰直角三角形,则可分为以下两种情况:当PQ为直角边时:点M到PQ的距离为此时,将直线AC向右平移4个单位后所得直线(y=x5)与抛物线的交点,即为所求之M点;当PQ为斜边时:点M到PQ的距离为此时,将直线AC向右平移2个单位后所得直线(y=x3)与抛物线的交点,即为所求之M点ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值如答图2所示,作点B关于直线AC的对称点B,由分析可知,当B、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段BF的长度【解答】解:(1)等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3)点B的坐标为(4,1)抛物线过A(0,1),B(4,1)两点,解得:b=2,c=1,抛物线的函数表达式为:y=x2+2x1(2)i)A(0,1),C(4,3),直线AC的解析式为:y=x1设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上点P在直线AC上滑动,可设P的坐标为(m,m1),则平移后抛物线的函数表达式为:y=(xm)2+m1解方程组:,解得,P(m,m1),Q(m2,m3)过点P作PEx轴,过点Q作QFy轴,则PE=m(m2)=2,QF=(m1)(m3)=2PQ=AP0若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:当PQ为直角边时:点M到PQ的距离为(即为PQ的长)由A(0,1),B(4,1),P0(2,1)可知,ABP0为等腰直角三角形,且BP0AC,BP0=如答图1,过点B作直线l1AC,交抛物线y=x2+2x1于点M,则M为符合条件的点可设直线l1的解析式为:y=x+b1,B(4,1),1=4+b1,解得b1=5,直线l1的解析式为:y=x5解方程组,得:,M1(4,1),M2(2,7)当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为如答图2,取AB的中点F,则点F的坐标为(2,1)由A(0,1),F(2,1),P0(2,1)可知:AFP0为等腰直角三角形,且点F到直线AC的距离为过点F作直线l2AC,交抛物线y=x2+2x1于点M,则M为符合条件的点可设直线l2的解析式为:y=x+b2,F(2,1),1=2+b2,解得b2=3,直线l2的解析式为:y=x3解方程组,得:,M3(1+,2+),M4(1,2)综上所述,所有符合条件的点M的坐标为:M1(4,1),M2(2,7),M3(1+,2+),M4(1,2)ii)存在最大值理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值如答图2,取点B关于AC的对称点B,易得点B的坐标为(0,3),BQ=BQ连接QF,FN,QB,易得FNPQ,且FN=PQ,四边形PQFN为平行四边形NP=FQNP+BQ=FQ+BQFB=当B、Q、F三点共线时,NP+BQ最小,最小值为的最大值为=【点评】本题为二次函数中考压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、几何变换(平移,对称)、等腰直角三角形、平行四边形、轴对称最短路线问题等知识点,考查了存在型问题和分类讨论的数学思想,试题难度较大6(2012东莞)如图,抛物线y=x2x9与x轴交于A、B两点,与y轴交于点C,连接BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论