高中数学圆锥曲线测试题期末.doc_第1页
高中数学圆锥曲线测试题期末.doc_第2页
高中数学圆锥曲线测试题期末.doc_第3页
高中数学圆锥曲线测试题期末.doc_第4页
高中数学圆锥曲线测试题期末.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学圆锥曲线测试题一、选择题1双曲线的实轴长是 ( )(A)2 (B) (C) 4 (D) 4【解析】可变形为,则,.故选C.2.下列曲线中离心率为的是 ( )(A) (B) (C) (D) 解析由得,选B3.设双曲线的渐近线方程为,则的值为 ( ) A.4 B. 3 C. 2 D. 1解析:由双曲线方程可知渐近线方程为,故可知4. “”是“方程”表示焦点在y轴上的椭圆的 ( )(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D) 既不充分也不必要条件 解析:将方程转化为 , 根据椭圆的定义,要使焦点在y轴上必须满足所以,故选C.5.已知双曲线的两条渐近线均和圆C:相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为 ( )(A) (B) (C) (D) 【解析】由圆C:得:,因为双曲线的右焦点为圆C的圆心(3,0),所以c=3,又双曲线的两条渐近线均和圆C相切,所以,即,又因为c=3,所以b=2,即,所以该双曲线的方程为,故选A.6.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,为C的实轴长的2倍,则C的离心率为 ( )(A) (B) (C)2 (D)3解析:由题意知,为双曲线的通径,所以,又,故选B.7.设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 ( ) A B C D3【解析】由有,则,故选B.8.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为 ( ) A B C D w.w.w.k.s.5.u.c.o.m 【解析】因为,再由有从而可得,故选B9.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点若,则椭圆的离心率是 ( )A B C D 【解析】对于椭圆,因为,则 w.w.w.k.s.5.u.c.o.m .c.o.m 10.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( ) w.w.w.k.s.5.u.c.o.m A B C D【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,则有,因【解析】因为,再由有从而可得,故选B11.已知双曲线的准线过椭圆的焦点,则直线与椭圆至多有一个交点的充要条件是 ( )A. B. C. D. 【解析】易得准线方程是 所以 即所以方程是联立可得由可解得A12.已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点在双曲线上.则 ( ) A. 12 B. 2 C. 0 D. 4【解析】由渐近线方程为知双曲线是等轴双曲线,双曲线方程是,于是两焦点坐标分别是(2,0)和(2,0),且或.不妨去,则,.二、填空题13.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C:(a0,b0)上,C的焦距为4,则它的离心率为_.15.已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_. 【解析】依题意,有,可得4c2364a2,即a2c29,故有b316.若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【解析】因为一条切线为x=1,且直线恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即,设点P(1,),连结OP,则OPAB,因为,所以,又因为直线AB过点(1,0),所以直线AB的方程为,因为点在直线AB上,所以,又因为,所以,故椭圆方程是.三、解答题17.设圆C与两圆中的一个内切,另一个外切.求C的圆心轨迹L的方程.解:设C的圆心的坐标为,由题设条件知化简得L的方程为18.如图,设是圆珠笔上的动点,点D是在轴上的投影,M为D上一点,且()当的在圆上运动时,求点M的轨迹C的方程;()求过点(3,0)且斜率为的直线被C所截线段的长度。【解析】:()设M的坐标为,的坐标为 由已知得在圆上,即C的方程为()过点(3,0)且斜率为 的直线方程为,设直线与C的交点为,将直线方程代入C的方程,得,即。线段AB的长度为19.在平面直角坐标系中,点为动点,分别为椭圆的左右焦点已知为等腰三角形()求椭圆的离心率;()设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程解:本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分. (I)解:设 由题意,可得即整理得(舍),或所以()解:由()知,可得椭圆方程为.直线方程为,A,B两点的坐标满足方程组,消去y并整理,得,解得,得方程组的解,不妨设,设点的坐标为,则,.由得,于是,由,即,化简得,将代入,得,所以,因此,点的轨迹方程是20.是双曲线E:上一点,M,N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值解:(1)已知双曲线E:,在双曲线上,M,N分别为双曲线E的左右顶点,所以,直线PM,PN斜率之积为而,比较得(2)设过右焦点且斜率为1的直线L:,交双曲线E于A,B两点,则不妨设,又,点C在双曲线E上:*(1)又 联立直线L和双曲线E方程消去y得:由韦达定理得:,代入(1)式得:21.椭圆的中心为原点O,离心率,一条准线的方程为。()求该椭圆的标准方程。()设动点P满足,其中M,N是椭圆上的点。直线OM与ON的斜率之积为。问:是否存在两个定点,使得为定值。若存在,求的坐标;若不存在,说明理由。解析:()由,解得,故椭圆的标准方程为 ()设,,则由得,即,因为点M,N在椭圆上,所以故 ,设分别为直线OM,ON的斜率,由题意知,因此,所以,所以P点是椭圆上的点,设该椭圆的左右焦点为,则由椭圆的定义,为定值,又因,因此两焦点的坐标分别为22.已知椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P直线AC与直线BD交于点Q (I)当|CD | = 时,求直线l的方程; (II)当点P异于A、B两点时,求证:为定值. 解析:由已知可得椭圆方程为,设的方程为为的斜率.则,的方程为.高中数学圆锥曲线测试题一、选择题1双曲线的实轴长是 ( )(A)2 (B) (C) 4 (D) 42.下列曲线中离心率为的是 ( )(A) (B) (C) (D) 3.设双曲线的渐近线方程为,则的值为 ( ) A.4 B. 3 C. 2 D. 14. “”是“方程”表示焦点在y轴上的椭圆的 ( )(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D) 既不充分也不必要条件 5.已知双曲线的两条渐近线均和圆C:相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为 ( )(A) (B) (C) (D) 6.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,为C的实轴长的2倍,则C的离心率为 ( )(A) (B) (C)2 (D)37.设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 ( ) A B C D38.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为 ( ) A B C D w.w.w.k.s.5.u.c.o.m 9.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点若,则椭圆的离心率是 ( )A B C D .c.o.m 10.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( ) w.w.w.k.s.5.u.c.o.m A B C D11.已知双曲线的准线过椭圆的焦点,则直线与椭圆至多有一个交点的充要条件是 ( )A. B. C. D. 12.已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点在双曲线上.则 ( ) A. 12 B. 2 C. 0 D. 4二、填空题13.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C:(a0,b0)上,C的焦距为4,则它的离心率为_.15.已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_. 16.若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是 三、解答题17.设圆C与两圆中的一个内切,另一个外切.求C的圆心轨迹L的方程.18.如图,设是圆上的动点,点D是在轴上的投影,M为D上一点,且.()当的在圆上运动时,求点M的轨迹C的方程;()求过点(3,0)且斜率为的直线被C所截线段的长度。19.在平面直角坐标系中,点为动点,分别为椭圆的左右焦点已知为等腰三角形()求椭圆的离心率;()设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程20.是双曲线E:上一点,M,N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值21.椭圆的中心为原点O,离心率,一条准线的方程为。()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论