华师大版八年级下19.3正方形与特殊的四边形综合题专训(二).doc_第1页
华师大版八年级下19.3正方形与特殊的四边形综合题专训(二).doc_第2页
华师大版八年级下19.3正方形与特殊的四边形综合题专训(二).doc_第3页
华师大版八年级下19.3正方形与特殊的四边形综合题专训(二).doc_第4页
华师大版八年级下19.3正方形与特殊的四边形综合题专训(二).doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华师大版八年级下册19.3正方形与特殊的四边形综合题专训一、 正方形与平行四边形综合试题、如图,p是正方形abcd内一点,以正方形abcd的一条边做为对角线,点p与这条边的两个端点作平行四边形,依次得点e、f、g、h,求证:四边形efgh是正方形【分析】如图,连接bd、ac则ac=bd通过证明ahepdb(sas),推知he=bd,ahe=pdb,则hedb易证四边形efgh是平行四边形同理,efhgac,ef=ac=hg,所以eh=ef,ehef,故四边形efgh是正方形【解答】证明:如图,连接bd、ac则ac=bd四边形ahdp和四边形aebp为平行四边形,ah=dp,ae=bp又hap+apd=180,eap+bpa=180hae=bpd,在ahe与pdb中,ahepdb(sas),he=bd,ahe=pdb,又ahpd,hedb同理,gf=bd,gfbd,he=gf,hegfbd,四边形efgh是平行四边形同理,efhgac,ef=ac=hg,又acbd,eh=ef,ehef,四边形efgh是正方形【点评】本题考查了平行四边形的判定与性质,正方形的判定与性质证得efeh是解题的难点试题、(2015春江阴市期中)如图,在正方形abcd中,点e在边ad上,点f在边bc的延长线上,连接ef与边cd相交于点g,连接be与对角线ac相交于点h,ae=cf,be=eg(1)求证:efac;(2)求bef大小;(3)若eb=4,则bae的面积为2【分析】(1)利用平行四边形的判定及其性质定理即可解决问题;(2)作辅助线构造出一对全等三角形,利用等边三角形的判定及其性质即可解决问题;(3)借助旋转变换将bcg与bae拼接到一起,通过作辅助线求出bhe的高,问题即可解决【解答】解:(1)四边形abcd是正方形,aecf,又ae=cf,四边形aefc是平行四边形,故efac(2)连接bg四边形abcd是正方形,且efac,deg=dac=45,dge=dca=45; 故cfg=deg=45,cgf=dge=45,cgf=cfg,cg=cf;ae=cf,ae=cg;在abe与cbg中,abecbg(sas),be=bg;又be=eg,be=bg=eg,beg是等边三角形,故bef=60(3)延长ea到m,使ah=cg;过点m作mkbe于点k;beg是等边三角形,ebg=60,abe+cbg=9060=30;在abm与bcg中,abmbcg(sas),bm=bc=4,abm=cbg;故abm+abe=abe+cbg=30,mk=,bme的面积=,bae的面积【点评】考查了正方形的性质、全等三角形的判定及其应用问题;解题的关键是通过作辅助线构造出全等三角形,结合等边三角形的判定及其性质来解决问题;对综合运用能力及探究思维能力提出了较高的要求试题、(2013惠东县校级模拟)如图,四边形abcd是正方形,点e,k分别在bc,ab上,点g在ba的延长线上,且ce=bk=ag(1)求证:de=dg; dedg;(2)尺规作图:以线段de,dg为边作出正方形defg(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的kf,猜想并写出四边形cefk是怎样的特殊四边形,并证明你的猜想【分析】(1)根据正方形性质求出ad=dc,gad=dce=90,根据全等三角形判定推出即可;根据全等得出gda=cde,求出gde=gda+ade=adc=90即可;(2)分别以g、e为圆心,以dg为半径画弧,两弧交于f,连接gf、ef即可;(3)推出ef=ck,efck,根据平行四边形的判定推出即可【解答】(1)证明:四边形abcd是正方形,ad=dc,gad=dce=90,在gad和ecd中gadecd(sas),de=dg;四边形abcd是正方形,adc=90,gadecd,gda=cde,gde=gda+ade=cde+ade=adc=90,dedg(2)解:如图所示:;(3)四边形cefk是平行四边形,证明:四边形abcd是正方形,b=ecd=90,bc=cd,在kbc和ecd中kbcecd(sas),de=ck,dec=bkc,b=90,kcb+bkc=90,kcb+dec=90,eoc=18090=90,四边形dgfe是正方形,de=ef=ck,fed=90=eoc,ckef,四边形cefk是平行四边形【点评】本题考查了全等三角形的性质和判定,平行线的性质和判定,正方形性质的应用,主要考查学生的推理能力试题、(2015春天水期末)如图所示:在abc中,分别以ab、ac、bc为边,在bc的同侧作等边abd、等边ace、等边bcf(1)求证:四边形daef是平行四边形;(2)探究下列问题:(只填条件,不需证明)当bac满足bac=150条件时,四边形daef是矩形;当bac满足bac=60条件时,以d、a、e、f为顶点的四边形不存在;当abc满足bac=150且ab=ac条件时,四边形daef是正方形【分析】(1)由等边三角形的性质得出ac=ce=ae,ab=ad=bd,bc=cf=bf,bcf=ace=60,求出bca=fce,证bcafce,得出ef=ba=ad,同理df=ac=ae,即可得出结论;(2)求出dae的度数,根据矩形的判定得出即可;证出d、a、e三点共线,即可得出结论;由得出四边形daef是矩形;再由ab=acbc得出四边形daef是菱形,即可得出结论【解答】(1)证明:abd、bce、ace是等边三角形,ac=ce=ae,ab=ad=bd,bc=cf=bf,bcf=ace=60,bca=fce=60acf,在bca和fce中,bcafce(sas),ef=ba=ad,同理:df=ac=ae,四边形daef是平行四边形;(2)解:当a=150时,四边形daef是矩形,理由如下:abd、ace是等边三角形,dab=eac=60,dae=3606060150=90,四边形daef是平行四边形,四边形daef是矩形,故答案为:=150;当bac=60时,以d、a、e、f为顶点的四边形不存在;理由如下:bac=60,bad=cae=60,点d、a、e共线,以d、a、e、f为顶点的四边形不存在;故答案为:bac=60;当abc满足bac=150,且ab=acbc时,四边形daef是正方形,理由如下:由得:当bac=150时,四边形daef是矩形;当ab=ac时,由(1)得:ef=ab=ad,df=ac=ae,ab=ac,ad=ae,四边形daef是平行四边形,四边形daef是菱形,四边形daef是正方形故答案为:bac=150,ab=ac【点评】本题考查了等边三角形的性质、全等三角形的性质和判定、平行四边形的判定、菱形的判定、矩形的判定以及正方形的判定;解此题的关键是求出ef=ba=ad,df=ac=ae,主要考查了学生的推理能力试题、(2011嘉兴)以四边形abcd的边ab、bc、cd、da为斜边分别向外侧作等腰直角三角形,直角顶点分别为e、f、g、h,顺次连接这四个点,得四边形efgh(1)如图1,当四边形abcd为正方形时,我们发现四边形efgh是正方形;如图2,当四边形abcd为矩形时,请判断:四边形efgh的形状(不要求证明);(2)如图3,当四边形abcd为一般平行四边形时,设adc=(090),试用含的代数式表示hae;求证:he=hg;四边形efgh是什么四边形?并说明理由【分析】(1)根据等腰直角三角形的性质得到e=f=g=h=90,求出四边形是矩形,根据勾股定理求出ah=hd=ad,dg=gc=cd,cf=bf=bc,ae=be=ab,推出ef=fg=gh=eh,根据正方形的判定推出四边形efgh是正方形即可;(2)根据平行四边形的性质得出,bad=180,根据had和eab是等腰直角三角形,得到had=eab=45,求出hae即可;根据aeb和dgc是等腰直角三角形,得出ae=ab,dg=cd,平行四边形的性质得出ab=cd,求出hdg=90+a=hae,根据sas证haehdg,根据全等三角形的性质即可得出he=hg;与证明过程类似求出gh=gf,fg=fe,推出gh=gf=ef=he,得出菱形efgh,证haehdg,求出ahd=90,ehg=90,即可推出结论【解答】(1)解:四边形efgh的形状是正方形(2)解:hae=90+,在平行四边形abcd中abcd,bad=180adc=180,had和eab是等腰直角三角形,had=eab=45,hae=360hadeabbad=3604545(180a)=90+,答:用含的代数式表示hae是90+证明:aeb和dgc是等腰直角三角形,ae=ab,dg=cd,在平行四边形abcd中,ab=cd,ae=dg,ahd和dgc是等腰直角三角形,hda=cdg=45,hdg=hda+adc+cdg=90+=hae,ahd是等腰直角三角形,ha=hd,haehdg,he=hg答:四边形efgh是正方形,理由是:由同理可得:gh=gf,fg=fe,he=hg,gh=gf=ef=he,四边形efgh是菱形,haehdg,dhg=ahe,ahd=ahg+dhg=90,ehg=ahg+ahe=90,四边形efgh是正方形【点评】本题主要考查对正方形的判定,等腰直角三角形的性质,菱形的判定和性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键二、 正方形与矩形综合试题、(2013海安县校级模拟)正方形abcd,矩形efgh均位于第一象限内,它们的边平行于x轴或y轴,其中,点a,e在直线om上,点c,g在直线on上,o为坐标原点,点a的坐标为(3,3),正方形abcd的边长为1若矩形efgh的周长为10,面积为6,则点f的坐标为(7,5),(8,5)【分析】由a的坐标为(3,3),正方形abcd的边长为1得出直线om的解析式,再求出c点的坐标利用待定系数法求出直线on的解析式;设矩形efgh的宽为a,则长为5a,再根据面积为6即可得出a的值,由点e在直线om上设点e的坐标为(e,e),由矩形的边长可用e表示出f、g点的坐标,再根据g点在直线on上得出e的值,即可得出结论【解答】解:a的坐标为(3,3),直线om的解析式为y=x,正方形abcd的边长为1,c(4,2),设直线on的解析式为y=kx(k0),2=4k,解得k=,直线on的解析式为:y=x;设矩形efgh的宽为a,则长为5a,矩形efgh的面积为6,a(5a)=6,解得:a=2或a=3,当a=2即ef=2时,eh=52=3,点e在直线om上,设点e的坐标为(e,e),f(e,e2),g(e+3,e2),点g在直线on上,e2=(e+3),解得:e=7,f(7,5);当a=3即ef=3时,eh=53=2,点e在直线om上,设点e的坐标为(e,e),f(e,e3),g(e+2,e3),点g在直线on上,e3=(e+2),解得:e=8,f(8,5)故答案为:(7,5),(8,5)【点评】本题考查了正方形的性质、矩形的性质、一次函数解析式的求法;根据题意得出直线on的解析式是解答此题的关键,在解答时要注意进行分类讨论试题、(2016春江阴市月考)如图,在正方形abcd中,点p在ad上,且不与a、d重合,bp的垂直平分线分别交cd、ab于e、f两点,垂足为q,过e作ehab于h(1)求证:hf=ap;(2)若正方形abcd的边长为12,ap=4,求线段af的长【分析】(1)由正方形的性质和已知条件可分别证明feh=pba,ab=he,进而可证明abphef,由全等三角形的性质即可得到hf=ap;(2)连接,设af=x,则pf=bf=12x,在apf中利用勾股定理可得:42+x2=(12x)2,解方程求出x的值即可【解答】解:(1)efbp,ehab,feh+emq=90=pba+bmh,又qme=bmh,feh=pba,四边形abcd是正方形,a=d=90,ab=ad,ehab,eha=90=a=d,四边形adeh是矩形,ad=eh,又ab=ad,ab=eh,在abp与hef中,abphef(asa),ap=fh;(2)连结pf,ef垂直平分bp,pf=bf,设af=x,则pf=bf=12x,在apf中,42+x2=(12x)2,x=,af=【点评】本题考查的是正方形的性质、勾股定理的运用、全等三角形的判定和性质以及线段垂直平分线的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键试题、(2015春霸州市期末)如图,abc中,点o为ac边上的一个动点,过点o作直线mnbc,设mn交bca的外角平分线cf于点f,交acb内角平分线ce于e(1)试说明eo=fo;(2)当点o运动到何处时,四边形aecf是矩形并证明你的结论;(3)若ac边上存在点o,使四边形aecf是正方形,猜想abc的形状并证明你的结论【分析】(1)根据ce平分acb,mnbc,找到相等的角,即oec=ecb,再根据等边对等角得oe=oc,同理oc=of,可得eo=fo(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形(3)利用已知条件及正方形的性质解答【解答】解:(1)ce平分acb,ace=bce,mnbc,oec=ecb,oec=oce,oe=oc,同理,oc=of,oe=of(2)当点o运动到ac中点处时,四边形aecf是矩形如图ao=co,eo=fo,四边形aecf为平行四边形,ce平分acb,ace=acb,同理,acf=acg,ecf=ace+acf=(acb+acg)=180=90,四边形aecf是矩形(3)abc是直角三角形四边形aecf是正方形,acen,故aom=90,mnbc,bca=aom,bca=90,abc是直角三角形【点评】本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法是矩形的判定和正方形的性质等的综合运用试题、(2015春万州区期末)如图,在正方形abcd中,点e、f、g、h分别在四边上,ehbc,gfab,eh与fg交于点o,且ae=ag,若ae比ch长2,bof的面积为(1)求正方形abcd的面积;(2)设ae=a,be=b,求代数式a4+b4的值【分析】(1)根据四边形abcd是正方形,得到adbc,ad=bc,abcd,ab=cd,由于ehbc,gfab,得出四边形aeog是正方形,四边形aehd,ebfo,gohd是矩形,根据bof的面积为,得到矩形ebfo的面积=3,设ae=oe=dh=x,be=ch=y,列出,即可得到结果;(2)由(1)求得ae=3,be=1,代入即可得到结果【解答】解:(1)四边形abcd是正方形,adbc,ad=bc,abcd,ab=cd,ehbc,gfab,四边形aeog是正方形,四边形aehd,ebfo,gohd是矩形,ae=dh,be=ch,bof的面积为,矩形ebfo的面积=3,设ae=oe=dh=x,be=ch=y,aee=3,be=1,ab=ae+be=4,正方形abcd的面积=44=16;(2)由(1)求得ae=3,be=1,a=3,b=1,a4+b4=34+11=82【点评】本题考查了正方形的判定和性质,正方形的面积,三角形的面积,充分利用已知条件列方程组求出各线段是解题的关键试题、(2015春冷水江市校级期末)如图,矩形abcd和正方形ecgf其中e、h分别为ad、bc中点连结af、hg、ah(1)求证:af=hg;(2)求证:fad=ghc;(3)试探究fah与afe的关系【分析】(1)根据矩形的性质和已知得出ae=hc,aehc,求出四边形ahce为平行四边形,根据平行四边形的性质得出ah=ec,ahec,求出四边形ahgf是平行四边形,即可得出答案;(2)根据平行线得出fah+ahg=180,求出dah=ahb,根据ahb+ahg+ghc=180即可得出答案;(3)过a点作amef,根据平行线的性质得出maf=afe,求出maah,根据垂直得出maf+fah=90,即可得出答案【解答】(1)证明:四边形abcd是矩形,且e、h分别为ad、bc的中点,ae=hc,aehc,四边形ahce为平行四边形,ah=ec,ahec,又四边形ecgf为正方形,ec=fg,ecfg,ah=fg,ahfg,四边形ahgf是平行四边形,ah=fg;(2)证明:四边形ahgf是平行四边形,fah+ahg=180,四边形abcd是矩形,adbc,dah=ahb,又ahb+ahg+ghc=180,fad=ghc;(3)fah+afe=90,证明:过a点作amef,则maf=afe,amef,ahec,feec,maah,maf+fah=90,fah+maf=90【点评】本题考查了矩形的性质,平行四边形的性质和判定,正方形的性质的应用,能综合运用知识点进行推理是解此题的关键三、 正方形与菱形综合试题、(2012深圳模拟)如图,正方形abcd的边长为2,以对角线bd为边作菱形befd,点c、e、f在同一直线上(1)求ebc的度数;(2)求ce的长【分析】(1)首先连接ac交bd于点o,过点e作ehbd于点h,由正方形abcd的边长为2,四边形befd是菱形,易求得be=bd=2,由bdef,可求得eh=oc=,然后由三角函数的性质,求得ebc的度数;(2)首先过点e作egbc,交bc的延长线于点g,即可得ecg是等腰直角三角形,然后设eg=cg=x,在rtbeg中,由be2=bg2+eg2,可得方程:(2)2=(2+x)2+x2,解此方程即可求得eg的长,继而求得ce的长【解答】解:(1)连接ac交bd于点o,过点e作ehbd于点h,正方形abcd的边长为2,bd=ac=2,acbd,oc=ac=,四边形befd是菱形,be=bd=2,bdef,点c、e、f在同一直线上,eh=oc=,在rtbeh中,sinebh=,ebh=30,ebc=dbcebh=4530=15;(2)过点e作egbc,交bc的延长线于点g,bdef,ecg=dbc=45,ecg是等腰直角三角形,eg=cg,设eg=x,则bg=bc+cg=2+x,在rtbeg中,be2=bg2+eg2,即(2)2=(2+x)2+x2,即2x2+4x4=0,解得:x=1或x=1(舍去),eg=1,ce=eg=(1)=【点评】此题考查了正方形的性质、菱形的性质、特殊角的三角函数值以及勾股定理的知识此题难度较大,注意掌握辅助线的作法,注意数形结合与方程思想的应用试题、(2013春莒南县期末)如图,正方形abcd的边长为2,以对角线ac为一边作菱形aefc,af于bc交于g点,则bce的度数与be的长分别为()a30、b30、c22.5、d22.5、【分析】根据正方形的对角线平分一组对角可得bac=acb=45,根据菱形的四条边都相等可得ac=ae,然后根据等腰三角形两底角相等求出ace,然后根据bce=aceacb计算即可得解;再根据正方形的对角线等于边长的倍求出ae=ac,然后根据be=aeab计算即可得解【解答】解:在正方形abcd中,bac=acb=45,四边形aefc是菱形,ac=ae,ace=(180bac)=(18045)=67.5,bce=aceacb=67.545=22.5,正方形abcd的边长为2,ae=ac=2,be=aeab=22故选c【点评】本题考查了正方形的性质,菱形的性质,等边对等角的性质,熟记两图形的性质并准确识图是解题的关键试题、(2015春遂宁期末)如图,正方形abcd的对角线ac是菱形aefc的一边,则fab的度数为22.5【分析】根据正方形的性质求出bac=45,再根据菱形的对角线平分一组对角解答即可【解答】解:四边形abcd是正方形,bac=45,四边形aefc是菱形,fab=bac=45=22.5故答案为:22.5【点评】本题考查了正方形的对角线平分一组对角,菱形的对角线平分一组对角的性质,熟记性质是解题的关键试题、(2014重庆校级二模)如图,已知正方形abcd的边长为3,菱形efgh的三个顶点e、g、h分别落在正方形的边ab、cd、da上,ah=1,则gc长度的取值范围是3gc3【分析】由菱形边长来确定gc长度的取值范围【解答】解:ah=1,he的最大值为=,此时dg=,此时gc=3,当g与点d重合时,菱形的边最小,3gc3故答案为:3gc3【点评】本题主要考查了正方形的性质及菱形的性质,解题的关键是由菱形边长来确定gc长度的取值范围试题、(2014春椒江区校级期中)如图,abcd是正方形,e是cf上一点,若dbef是菱形,则ebc=15【分析】过d作dg垂直于cf,垂足为g,由正方形的性质可得出正方形的四条边相等,且四个角为直角,三角形bcd为等腰直角三角形,可得出bdc与dbc都为45,设正方形的边长为1,根据勾股定理求出bd的长为,即菱形的四条边为,由dg与fc垂直,且bd与ef平行,可得bd垂直于dg,进而得到cdg为45,即三角形dcg为等腰直角三角形,由dc的长为1,可求出dg为,在直角三角形dfg中,由dg为df的一半,得到f为30,再根据菱形的对角相等,可得dbe为30,由ebc=dbcdbe求出度数即可【解答】解:过d作dgcf,垂足为g,如图所示:四边形abcd为正方形,cbd=cdb=45,bcd=90,设正方形abcd的边长为1,即ab=bc=cd=ad=1,根据勾股定理得:bd=,四边形befd为菱形,be=ef=df=bd=,又bdef,dgfc,bddg,即bdg=90,cdg=bdgbdc=9045=45,又dgc=90,dcg为等腰直角三角形,又dc=1,dg=dcsin45=,又df=,在rtdfg中,由dg=df,f=30,dbe=30,则ebc=dbcdbe=4530=15故答案是:15【点评】此题考查了正方形的性质,菱形的性质,等腰直角三角形的性质以及直角三角形的性质,根据题意作出辅助线dg是本题的突破点,熟练掌握图形的性质是解本题的关键试题、(2015荆州)如图1,在正方形abcd中,p是对角线bd上的一点,点e在ad的延长线上,且pa=pe,pe交cd于f(1)证明:pc=pe;(2)求cpe的度数;(3)如图2,把正方形abcd改为菱形abcd,其他条件不变,当abc=120时,连接ce,试探究线段ap与线段ce的数量关系,并说明理由【分析】(1)先证出abpcbp,得pa=pc,由于pa=pe,得pc=pe;(2)由abpcbp,得bap=bcp,进而得dap=dcp,由pa=pc,得到dap=e,dcp=e,最后cpf=edf=90得到结论;(3)借助(1)和(2)的证明方法容易证明结论【解答】(1)证明:在正方形abcd中,ab=bc,abp=cbp=45,在abp和cbp中,abpcbp(sas),pa=pc,pa=pe,pc=pe;(2)由(1)知,abpcbp,bap=bcp,dap=dcp,pa=pe,dap=e,dcp=e,cfp=efd(对顶角相等),180pfcpcf=180dfee,即cpf=edf=90;(3)在菱形abcd中,ab=bc,abp=cbp=60,在abp和cbp中,abpcbp(sas),pa=pc,bap=bcp,pa=pe,pc=pe,dap=dcp,pa=pc,dap=aep,dcp=aepcfp=efd(对顶角相等),180pfcpcf=180dfeaep,即cpf=edf=180adc=180120=60,epc是等边三角形,pc=ce,ap=ce【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出abp=cbp是解题的关键四、 正方形与正方形综合试题、(2016贵阳模拟)将五个边长都为2cm的正方形按如图所示摆放,点a、b、c、d分别是四个正方形的中心,则图中四块阴影面积的和为()a2cm2b4cm2c6cm2d8cm2【分析】连接ap、an,点a是正方形的对角线的交点,则ap=an,apf=ane=45,易得pafnae,进而可得四边形aenf的面积等于nap的面积,同理可得答案【解答】解:如图,连接ap,an,点a是正方形的对角线的交则ap=an,apf=ane=45,paf+fan=fan+nae=90,paf=nae,pafnae,四边形aenf的面积等于nap的面积,而nap的面积是正方形的面积的,而正方形的面积为4,四边形aenf的面积为1cm2,四块阴影面积的和为4cm2故选b【点评】本题考查旋转的性质旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等要注意旋转的三要素:定点旋转中心;旋转方向;旋转角度试题、现有一张边长等于a(a16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45角画线,将正方形纸片分成5部分,则阴影部分是正方形(填写图形的形状)(如图),它的一边长是cm【分析】延长小正方形的一边交大正方形于一点,连接此点与距大正方形顶点8cm处的点,构造直角边长为8的等腰直角三角形,将小正方形的边长转化为等腰直角三角形的斜边长来求解即可【解答】解:如图,作ab平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于b点,abc为直角边长为8cm的等腰直角三角形,ab=ac=8,阴影正方形的边长=ab=8 cm故答案为:正方形, cm【点评】本题考查了正方形的性质与勾股定理的知识,题目同时也渗透了转化思想试题、已知,正方形cefg的边gc在正方形abcd的边cd上,延长cd到h,使dh=ce,k在bc边上,且bk=ce,求证:四边形akfh为正方形【分析】根据正方形的性质得出ab=bc=cd=ad,bad=dcb=b=adc=90,gce=e=gfe=cgf=90,求出adh=hgf=e=b=90,bk=gf=dh=ef,ke=gh=ab=ad,证abkkefhgfadh,根据全等三角形的性质推出ak=kf=hf=ah,bak=had,求出hak=bad=90,根据正方形的判定得出即可【解答】证明:四边形abcd和四边形cefg是正方形,ab=bc=cd=ad,bad=dcb=b=adc=90,gce=e=gfe=cgf=90,adh=hgf=e=b=90,dh=ce,bk=ce,bk=gf=dh=ef,ke=gh=ab=ad,在abk、kef、hgf、adh中abkkefhgfadh,ak=kf=hf=ah,bak=had,bad=90,hak=had+dak=bak+dak=bad=90,四边形akfh为正方形【点评】本题考查了正方形的性质和判定,全等三角形的性质和判定的应用,解此题的关键是推出abkkefhgfadh,注意:有一个角是直角的菱形是正方形试题、(2013历城区一模)如图,四边形abcd、defg都是正方形,连接ae、cg,ae与cg相交于点m下列结论:ae=cg,aecg,dmge,om=od,dme=45正确结论的个数为()a2个b3个c4个d5个【分析】根据正方形的性质可得ad=cd,de=dg,adc=edg=90,然后求出ade=cdg,再利用“边角边”证明ade和cdf全等,根据全等三角形对应边相等可得ae=cg,判定正确;根据全等三角形对应角相等可得1=2,再求出meg+mge=deg+dge=90,然后求出emg=90,判定正确;根据直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论