已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普陀区高三年级质量调研数学试卷 (文科)一、填空题(本大题满分56分)1. 设平面向量,则 .2. 已知函数,若的反函数的图像经过点,则 . 3. 已知集合,则 . 4. 若数列对任意的都有,且,则=_.5. 若直线的一个法向量为,则直线的倾斜角为 . 6. 已知,其中是第四象限角,则 . 第10题图7. 已知一个球的半径为,一个平面截该球所得小圆的半径为,该小圆圆心到球心的距离为,则关于的函数解析式为 .8. 抛物线的顶点在坐标原点,焦点是椭圆的一个焦点,则此抛物线的焦点到其准线的距离为 . 9. 若,则 . 10. 某种电子产品的采购商指导价为每台200元,若一次采购数量达到一定量,还可享受折扣. 右图为某位采购商根据折扣情况设计的算法程序框图,则该程序运行时,在输入一个正整数之后,输出的变量表示的实际意义是 ;若一次采购85台该电子产品,则 元. 11. 方程为的曲线上任意两点之间距离的最大值为 . 12. 高一数学课本中,两角和的正弦公式是在确定了两角差的余弦公式后推导的. 即 . (填入推导的步骤)13. 已知数列的前项和(,),则 .14. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的四面体的以下判断中,所有正确的结论是 (写出所有正确结论的编号) 能构成每个面都是等边三角形的四面体; 能构成每个面都是直角三角形的四面体; 能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体.二、选择题(本大题满分20分)15. “”是“”的 ( )A. 充分非必要条件; B. 必要非充分条件; C. 充要条件; D. 既非充分又非必要条件.zxyOAB第16题图16. 如图,直角三角形的直角顶点是空间坐标系的原点,点在轴正半轴上,;点在轴正半轴上,.我们称绕轴逆时针旋转后得到的旋转体为四分之一圆锥体. 以下关于此四分之一圆锥体的三视图的表述错误的是 ( )A. 该四分之一圆锥体主视图和左视图的图形是全等的直角三角形;B. 该四分之一圆锥体俯视图的图形是一个圆心角为的扇形;C. 该四分之一圆锥体主视图、左视图和俯视图的图形都是扇形;D. 该四分之一圆锥体主视图的图形面积大于俯视图的图形面积.17. 双曲线上到定点的距离是6的点的个数是 ( ) A. 0个; B. 2个; C. 3个; D. 4个.18. 若对于任意角,都有(),则下列不等式中恒成立的是 ( )A. ; B. ; C. ; D. .三、解答题(本大题满分74分)19. (本题满分10分) ABC D P第19题图如图,平面,是边长为2的正方形,. 求异面直线与所成角的大小.20. (本题满分14分,其中第1小题6分,第2小题8分)为了贯彻节能减排的理念,国家制定了家电能耗的节能标准.以某品牌的节能型冰箱为例,该节能型冰箱使用一天(24小时)耗电仅度,比普通冰箱约节省电能,达到国家一级标准.经测算,每消耗100度电相当于向大气层排放千克二氧化碳,而一棵大树在60年的生命周期内共可以吸收1吨二氧化碳.(1)一台节能型冰箱在一个月(按天不间断使用计算)中比普通冰箱相当于少向大气层排放多少千克的二氧化碳(精确到千克)?(2)某小城市数千户居民现使用的都是普通冰箱. 在“家电下乡”补贴政策支持下,若每月月初都有150户居民“以旧换新”换购节能型冰箱,那么至少多少个月后(每月按30天不间断使用计算),该市所有新增的节能型冰箱少排放的二氧化碳的量可超过150棵大树在60年生命周期内共吸收的二氧化碳的量?21. (本题满分14分,其中第1小题7分,第2小题7分).已知的三个内角A、B、C的对边分别为、. (1)若当时,取到最大值,求的值;(2)设的对边长,当取到最大值时,求面积的最大值.22.(本题满分16分,其中第1小题3分,第2小题6分,第3小题7分)设为非零实数,偶函数,.(1) 求实数的值;(2) 试确定函数的单调区间(不需证明);(3) 若函数在区间上存在零点,试求实数的取值范围.23. (本题满分20分,其中第1小题4分,第2小题6分,第3小题10分)已知是直线上的个不同的点(,、均为非零常数),其中数列为等差数列.(1)求证:数列是等差数列;(2)若点是直线上一点,且,求证: ;(3) 设,且当时,恒有(和都是不大于的正整数, 且).试探索:在直线上是否存在这样的点,使得成立?请说明你的理由.高三调研数学试卷参考答案及评分标准一、填空题(每小题4分,满分56分):1. ; 2. 4; 3. ; 4. (文,理)40; 5. ; 6. (或); 7. ,; 8. 4; 9.理:;文:; 10.表示一次采购共需花费的金额; ;11. ; 12. ;13. 理:;文:2; 14. 理:;文:.二、选择题(每题4分,满分16分): 题号15161718答案BCBD三、解答题: 19.(本题满分10分)(理科)解:由结论:“当时,”且根据本题条件,故本题需根据变量和常数1的大小比较进行分类讨论:(1)当时,;(2)当时,;(3)当或时,有.故集合含有以上三个元素,用列举法表示集合.36910 ABC D P E F(文科)解:如图,延长DA至E,CB至F,使得DA=AE,CB=BF. 联结AF,PF,EF,DF. 因为ABCD是正方形,所以AD/BF,且AD=BF,所以AF/BD. 故(或其补角)的大小即为异面直线与所成角的大小.又正方形边长为2,PD=1,故,.所以,.于是,所以异面直线与所成角的大小为.3791020.(本题满分14分,其中第1小题6分,第2小题8分)解:(1)由于节能型冰箱比普通冰箱约节省电能,故一台节能型冰箱一天(小时)消耗的度电相当于比普通冰箱少消耗的电能,即一台节能型冰箱在一个月中比普通冰箱要少消耗电:(度);设一台节能型冰箱在一个月中比普通冰箱要少排放千克的二氧化碳,则(千克).故一台节能型冰箱在一个月中比普通冰箱少向大气层排放约千克的二氧化碳.(2)设个月后(),这些节能型冰箱少排放的二氧化碳可超过150棵大树在年生命周期内所吸收的二氧化碳的量.依题意,有 ,因为,故可解得.所以,至少经过10个月后,这些节能型冰箱少排放的二氧化碳可超过150棵大树在年生命周期内共吸收的二氧化碳的量.36101421. (本题满分14分,其中第1小题7分,第2小题7分)解:(1)因为 故当时,原式取到最大值,即三角形的内角时,最大值为.(2)由(1)结论可得,此时.又,因此,当且仅当时等号成立.所以.故面积的最大为.2579121422.(本题满分16分,理科:第1小题9分,第2小题7分;文科:第1小题3分,第2小题6分,第3小题7分)(理科)解:(1)设BC的中点为D,连结AD、DM,则有 于是,可知即为AM与侧面BCC1所成角.因为,点到平面的距离为,不妨设,.在RtADM中,.由,故.DABCA1B1C1M而当时,即,所以,点到平面的距离的取值范围是.(2)解法一:当时,由(1)可知,故可得,. 设向量与的夹角为,因为 . 所以,369111315故向量与夹角的大小为.DABCA1B1C1MEO解法二:如图,以中点O为原点,所在的直线为轴,所在的直线为轴,所在直线为轴(其中点为中点),建立空间直角坐标系.由(1)可知,当时,.所以有,,,即,.设向量与夹角为,则NABCA1B1C1M故向量与夹角的大小为.解法三:如图,过点作/,交于.联结.因为是正三棱柱,故可得. 当时,由(1)可知,故可得.在等腰三角形中,不难求得,即异面直线与所成角为,而图中不难发现,与夹角的大小为异面直线与所成角的补角,即与夹角的大小为.16101316111416(文科)解:(1) 为偶函数,对恒成立,即对恒成立,又,于是得对恒成立,.(2) 由(1)得 可知,当时,单调递增区间为,单调递减区间为 ;当时,单调递增区间为和,单调递减区间为和.(3)解法一:由偶函数的性质得:函数在区间上也必定有零点,即方程在区间上有实数解,则,设,可知函数在区间上单调递增,则,.解法二:若函数在区间上存在零点,则必有即.369121416131623. (本题满分20分,其中第1小题4分,第2小题6分,第3小题10分)解:(1)证:设等差数列的公差为,因为,所以为定值,即数列也成等差数列.(2)证:因为点、和都是直线上一点,故有()于是,令,则有.(3)(文科)假设存在点满足要求,则有,又当时,恒有,则又有,所以又因为数列成等差数列,于是,所以,故,同理,且点在直线上(是、的中点),即存在点满足要求.4691012151820(3)(理科)提出命题:(在本题大前提下)若点满足,则系数数列的和是点在直线上的充要条件.证明:设,由条件, 先证充分性:“当时,点在直线上”.因为,故而(),所以 当时,即有,即点在直线上.再证必要性:“若点在直线上,则.”因为,故而因为(),所以 又因为点在直线上,所以满足,故.补充:由以上证明进一步可知,对于直线上任一点,若满足,则都有.【评分建议】1. 若能提出一个由题中三条线索出发的相关猜想或命题,但没有任何研究过程,则无
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房屋出租授权书:出租方与代理事务
- 2024年新出台:广告发布与代理合同细则
- 职业培训工作总结8篇
- 2024年建筑钢筋班组劳务协议
- 房地产土建工程师工作总结(3篇)
- 七年级的班级工作总结(3篇)
- 幼儿园防震减灾应急演练总结(4篇)
- 2024年珍惜粮食国旗下讲话稿范文(16篇)
- 班会心得作文10篇(全文)
- 2024年造纸印染污染治理项目评价分析报告
- 锂电池供应商的合作协议书范文
- 杭州市2025届高三教学质量检测(一模) 英语试题卷(含答案解析)
- 2024年商场员工管理制度(四篇)
- 培训教学课件模板
- 系统架构师论文(经典范文6篇)
- 农业科技园区发展规划
- 11.20世界慢阻肺日认识你的肺功能预防控制和消除慢阻肺课件
- 质量为纲-华为公司质量理念与实践
- JBT 1306-2024 电动单梁起重机(正式版)
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- TCALC 003-2023 手术室患者人文关怀管理规范
评论
0/150
提交评论