




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年北京高考数学(文史类、理工类)试题及答案解析汇总2013北京高考理科数学试题第一部分 (选择题 共40分)一、选择题共8小题。每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。1.已知集合A=1,0,1,B=x|1x1,则AB= ( )A.0 B.1,0C.0,1 D.1,0,12.在复平面内,复数(2i)2对应的点位于( )A.第一象限 B. 第二象限C.第三象限 D. 第四象限3.“=”是“曲线y=sin(2x)过坐标原点的”A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为A.1 B. C. D.5.函数f(x)的图象向右平移一个单位长度,所得图象与y=ex关于y轴对称,则f(x)=A. B. C. D. 6.若双曲线的离心率为,则其渐近线方程为A. y=2x B. y= C. D.7.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于A. B.2 C. D.8.设关于x,y的不等式组表示的平面区域内存在点P(x0,y0)满足x02y0=2,求得m的取值范围是A. B. C. D. 第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,)到直线sin=2的距离等于 10.若等比数列an满足a2a4=20,a3a5=40,则公比q= ;前n项和Sn= .11.如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,PA=3,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .13.向量a,b,c在正方形网格中的位置如图所示,若c=ab(,R),则=14.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为 .三、解答题共6小题,共80分。解答应写出文字说明,演2013年普通高等学校招生统一考试算步骤或证明过程15. (本小题共13分)在ABC中,a=3,b=2,B=2A.(I)求cosA的值,(II)求c的值16.( 本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天()求此人到达当日空气重度污染的概率()设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。()由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17. (本小题共14分)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC平面AA1C1C,AB=3,BC=5.()求证:AA1平面ABC;()求二面角A1-BC1-B1的余弦值;()证明:在线段BC1存在点D,使得ADA1B,并求的值.18. (本小题共13分)设l为曲线C:在点(1,0)处的切线.(I)求l的方程;(II)证明:除切点(1,0)之外,曲线C在直线l的下方19. (本小题共14分)已知A、B、C是椭圆W:上的三个点,O是坐标原点.(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.20. (本小题共13分)已知an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项,的最小值记为Bn,dn=AnBn(I)若an为2,1,4,3,2,1,4,3,是一个周期为4的数列(即对任意nN*,),写出d1,d2,d3,d4的值;(II)设d为非负整数,证明:dn=d(n=1,2,3)的充分必要条件为an为公差为d的等差数列;(III)证明:若a1=2,dn=1(n=1,2,3),则an的项只能是1或2,且有无穷多项为1要使可行域存在,必有m2m+1,要求可行域内包含直线上的点,只要边界点(m,12m)在直线上方,且(-m,m)在直线下方,解不等式组得m绝密启用并使用完毕2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。考生务必将答案答在答题卡上,在试卷上答无效。考试结束后,将本卷和答题卡一并交回。第一部分 (选择题 共40分)一、 选择题共8小题。每小题5分,共40分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。(1)已知集合A=-1,0,1,B=x|-1x1,则AB=( )(A)0(B)-1,,0(C)0,1(D)-1,,0,1(2)设a,b,cR,且abc(B)1ab2(D)a3b3(3)下列函数中,既是偶函数又在区间(0,+ )上单调递减的是(A)y= 1x (B)y=e-3 (C)y=x2+1 (D)y=lgx(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限(5)在ABC中,a=3,b=5,sinA= 13,则sinB(A) 15 (B) 59(C)53 (D)1(6)执行如图所示的程序框图,输出的S值为 (A)1 (B)23(C)321 (D)610987(7)双曲线x-ym=1的离心率大于2的充分必要条件是(A)m12(B)m1(C)m大于1(D)m2(8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有(A)3个 (B)4个(C)5个 (D)6个第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分。(9)若抛物线y2=2px的焦点坐标为(1,0)则p=_;准线方程为_(10)某四棱锥的三视图如图所示,该四棱锥的体积为_.(11)若等比数列an满足a2+a4=20,a3+a5=40,则公比q=_;前n项sn=_.(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为_.(13)函数f(x)=的值域为_.(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP =AB+AC (12,01)的点P组成,则D的面积为_.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。(15)(本小题共13分)已知函数f(x)=(2cos2x-1)sin2x=12cos4x.(1) 求f(x)的最小正周期及最大值(2) (2)若(2,)且f()=22,求的值(16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天。()求此人到达当日空气质量优良的概率()求此人在该市停留期间只有1天空气重度污染的概率。()由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(本小题共14分)如图,在四棱锥P-ABCD中,ABCD,ABAD,CD=2AB,平面PAD底面ABCD,PAAD.E和F分别是CD和PC的中点,求证:()PA底面ABCD;()BE平面PAD()平面BEF平面PCD. (18)(本小题共13分)已知函数f(x)=x2+xsin x+cos x.()若曲线y=f(x)在点(a,f(a)处与直线y=b相切,求a与b的值。()若曲线y=f(x)与直线y=b 有两个不同的交点,求b的取值范围。(19)(本小题共14分)直线y=kx+m(m0)与椭圆W: x24+y2相交与A,C两点,O为坐标原电。()当点B的左边为(0,1),且四边形OABC为菱形时,求AC的长;()当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形。(20)(本小题共13分)给定数列a1,a2,an。对i-1,2,n-l,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,an的最小值记为Bi,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论