时间序列分析sas第3章_第1页
时间序列分析sas第3章_第2页
时间序列分析sas第3章_第3页
时间序列分析sas第3章_第4页
时间序列分析sas第3章_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1佛山科学技术学院应 用 时 间 序 列 分 析 实 验 报 告实验名称 第三章 平稳时间序列分析 专业班级 10 数学与应用数学 姓 名 林敏杰 学 号 2010214222 一、上机练习程序及其结果分析:data ex3_1;input x;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.16 2.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc gplot data=ex3_1;plot x*time=1;symbol1 c=red I=join v=star;run;2结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。proc arima data=ex3_1;identify Var=x nlag=8;run;3结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。4从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。从最后的纯随机检验结果分析来看,P0.05的,也就说明它是不显著的,而其他参数均是显著的,为了使模型拟合得更优,我们应该除去常数项,再进行模型分析比较。estimate q=4 noint;run;6结果分析:以上是我们删去了常数项之后的结果。从上述参数分析来看,所有的参数的t检验统计量的P值都是0.001的,因而它们都是显著的。因而我们建立了MA(4)模型如下:forecast lead=5 id=time out=results;run;结果分析:7以上是我们对数据进行了5期的预测,其预测数据均可以从上图中看出来。其中,数据从左往右分别表示序列值的序号、预测值、预测值的标准差、95%的置信下限和95% 的置信上限。以下我们把这些预测的数据用图来表现出来:proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=black i=none v=star;symbol2 c=red i=join v=none;symbol3 c=green i=join v=none l=32;run;结果分析:该图为预测的图像,其中,红色线段表示预测出来的数列,绿色的两条线段分别表示 95%的置信下限和 95%的置信上限,而黑色的星号标识则是对应的样本数据值。从图来分析,我们可以看出,黑色的样本数据值跟我们预测出来的线段非常的吻合,因而模型建立得很不错。再结合上一步骤的参数结果,也就是预测的数据误差来看,误差都是非常的小,因而对数据的 5 期预测值也是非常的可靠。在对比第一个步骤的时序图,我们可以发现,在预测的 5 个期间段中,样本数据并没有很大程度的波动或很明显的趋势,但是相对偏向于下降的趋势,而它对应的置信区间也是最大的,因而数据会稳定在这期间中,尽管如此,数据也不会有明显的波动,都是相对稳定的。8二、课后习题(老师布置的习题部分)17.data lianxi3_17;input x;time=_n_;cards;126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4110.5 25 69.3 53.5 39.8 63.6 46.7 72.979.6 83.6 80.7 60.3 79 74.4 49.6 54.771.8 49.1 103.9 51.6 82.4 83.6 77.8 79.389.6 85.5 58 120.7 110.5 65.4 39.9 40.188.7 71.4 83 55.9 89.9 84.8 105.2 113.7124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.998.3 55.5 66.1 78.4 120.5 97 110;proc gplot data=lianxi3_17;plot x*time=1;symbol1 c=red I=join v=star;run;结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以9初步判断这是平稳数列。proc arima data=lianxi3_17;identify Var=x nlag=8;run;10结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。从最后的纯随机检验结果分析来看,P0.0001,因而这是非白噪声序列。综上所述,该数列是平稳非白噪声序列,因为我们可以建立ARMA模型,对数据进行拟合。首先观察自相关图和偏自相关图,从这两图来看,偏自相关图是1阶截尾的,而篇相关系数是拖尾的。因而我们可以考虑建立AR (1)模型,为了避免个人经验不足而导致模型建立错误,我们可以通过计算机来判断确定。proc arima data=lianxi3_17;identify Var=x nlag=8 minic p=(0:5) q=(0:5);run;11结果分析:从上图可以看出,在众多模型中,MA(4)模型的BIC信息量是最小的,因而我们接下来会采用MA( 4)模型来进行分析,这与我们上面人工判断分析的结果也是吻合的。estimate p=1;run;结果分析:以上是我们建立的AR(1)模型中的参数结果。其中,我们可以看出所有的参数均是显著的,为了使模型拟合得更优,我们应该除去常数项,再进行模型分析比较。forecast lead=5 id=time out=results;run;12结果分析:以上是我们对数据进行了5期的预测,其预测数据均可以从上图中看出来。其中,数据从左往右分别表示序列值的序号、预测值、预测值的标准差、95%的置信下限和95% 的置信上限。以下我们把这些预测的数据用图来表现出来:proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=black i=none v=star;symbol2 c=red i=join v=none;symbol3 c=green i=join v=none l=32;run;结果分析:该图为预测的图像,其中,红色线段表示预测出来的数列,绿色的两条线段分别表示 95%的置信13下限和 95%的置信上限,而黑色的星号标识则是对应的样本数据值。从图来分析,我们可以看出,黑色的样本数据值跟我们预测出来的线段非常的吻合,因而模型建立得很不错。再结合上一步骤的参数结果,也就是预测的数据误差来看,误差都是非常的小,因而对数据的 5 期预测值也是非常的可靠。在对比第一个步骤的时序图,我们可以发现,在预测的 5 个期间段中,样本数据并没有很大程度的波动或很明显的趋势,但是相对偏向于下降的趋势,而它对应的置信区间也是最大的,因而数据会稳定在这期间中,尽管如此,数据也不会有明显的波动,都是相对稳定的。18.data lianxi3_18;input x;time=_n_;cards;0.97 0.45 1.61 1.26 1.37 1.43 1.32 1.23 0.84 0.89 1.181.33 1.21 0.98 0.91 0.61 1.23 0.97 1.10 0.74 0.80 0.810.80 0.60 0.59 0.63 0.87 0.36 0.81 0.91 0.77 0.96 0.930.95 0.65 0.98 0.70 0.86 1.32 0.88 0.68 0.78 1.25 0.791.19 0.69 0.92 0.86 0.86 0.85 0.90 0.54 0.32 1.40 1.140.69 0.91 0.68 0.57 0.94 0.35 0.39 0.45 0.99 0.84 0.620.85 0.73 0.66 0.76 0.63 0.32 0.17 0.46;proc gplot data=lianxi3_18;plot x*time=1;symbol1 c=red I=join v=star;run;14结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。proc arima data=lianxi3_18;identify Var=x nlag=8;run;15结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。从最后的纯随机检验结果分析来看,P0.0001,因而这是非白噪声序列。综上所述,该数列是平稳非白噪声序列,因为我们可以建立ARMA模型,对数据进行拟合。首先观察自相关图和偏自相关图,从这两图来看,偏自相关图是1阶截尾的,而自相关系数是拖尾的。因而我们可以考虑建立AR(1)模型,为了避免个人经验不足而导致模型建立错误,我们可以通过计算机来判断确定。proc arima data=lianxi3_18;16identify Var=x nlag=8 minic p=(0:5) q=(0:5);run;结果分析:从上图可以看出,在众多模型中,AR(1)模型的BIC 信息量是最小的,因而我们接下来会采用AR(1)模型来进行分析,这与我们上面人工判断分析的结果也是吻合的。estimate p=1;run;结果分析:17以上是我们建立的AR(1)模型中的参数结果。其中,我们可以看出所有的参数均是显著的因而模型建立成立。forecast lead=5 id=time out=results;run;结果分析:以上是我们对数据进行了5期的预测,其预测数据均可以从上图中看出来。其中,数据从左往右分别表示序列值的序号、预测值、预测值的标准差、95%的置信下限和95% 的置信上限。以下我们把这些预测的数据用图来表现出来:proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=black i=none v=star;symbol2 c=red i=join v=none;symbol3 c=green i=join v=none l=32;run;18结果分析:该图为预测的图像,其中,红色线段表示预测出来的数列,绿色的两条线段分别表示 95%的置信下限和 95%的置信上限,而黑色的星号标识则是对应的样本数据值。从图来分析,我们可以看出,黑色的样本数据值跟我们预测出来的线段非常的吻合,因而模型建立得很不错。再结合上一步骤的参数结果,也就是预测的数据误差来看,误差都是非常的小,因而对数据的 5 期预测值也是非常的可靠。在对比第一个步骤的时序图,我们可以发现,在预测的 5 个期间段中,样本数据并没有很大程度的波动或很明显的趋势,但是相对偏向于下降的趋势,而它对应的置信区间也是最大的,因而数据会稳定在这期间中,尽管如此,数据也不会有明显的波动,都是相对稳定的。19.data lianxi3_19;input x;time=_n_;cards;81.9 89.4 79.0 81.4 84.8 85.9 88.0 80.3 82.683.5 80.2 85.2 87.2 83.5 84.3 82.9 84.7 82.981.5 83.4 87.7 81.8 79.6 85.8 77.9 89.7 85.486.3 80.7 83.8 90.5 84.5 82.4 86.7 83.0 81.81989.3 79.3 82.7 88.0 79.6 87.8 83.6 79.5 83.388.4 86.6 84.6 79.7 86.0 84.2 83.0 84.8 83.681.8 85.9 88.2 83.5 87.2 83.7 87.3 83.0 90.580.7 83.1 86.5 90.0 77.5 84.7 84.6 87.2 80.586.1 82.6 85.4 84.7 82.8 81.9 83.6 86.8 84.084.2 82.8 83.0 82.0 84.7 84.4 88.9 82.4 83.085.0 82.2 81.6 86.2 85.4 82.1 81.4 85.0 85.884.2 83.5 86.5 85.0 80.4 85.7 86.7 86.7 82.386.4 82.5 82.0 79.5 86.7 80.5 91.7 81.6 83.985.6 84.8 78.4 89.9 85.0 86.2 83.0 85.4 84.484.5 86.2 85.6 83.2 85.7 83.5 80.1 82.2 88.682.0 85.0 85.2 85.3 84.3 82.3 89.7 84.8 83.180.6 87.4 86.8 83.5 86.2 84.1 82.3 84.8 86.683.5 78.1 88.8 81.9 83.3 80.0 87.2 83.3 86.679.5 84.1 82.2 90.8 86.5 79.7 81.0 87.2 81.684.4 84.4 82.2 88.9 80.9 85.1 87.1 84.0 76.582.7 85.1 83.3 90.4 81.0 80.3 79.8 89.0 83.780.9 87.3 81.1 85.6 86.6 80.0 86.6 83.3 83.182.3 86.7 80.2;proc gplot data=lianxi3_18;plot x*time=1;symbol1 c=red I=join v=star;run;20结果分析:上图是数据对应的时序图,从图上曲线分析来看,数据并没有周期性或者趋向性规律,因而可以初步判断这是平稳数列。proc arima data=lianxi3_18;identify Var=x nlag=8;run;21结果分析:本过程中,我们建立了8阶自回归分析模型,图上依次是变量的描述性统计量、样本自相关图、样本逆相关图和样本偏自相关图。由于本次实验探究的是平稳序列,因而样本逆相关图先不作分析。从自相关图来看,自相关系数趋于0的速度是比较快的,再结合时序图来看,可以确定这组数列是属于平稳数列。从最后的纯随机检验结果分析来看,P0.0001,因而这是非白噪声序列。综上所述,该数列是平稳非白噪声序列,因为我们可以建立ARMA模型,对数据进行拟合。首先观察自相关图和偏自相关图,从这两图来看,偏自相关图是不明显截尾,而自相关系数是1阶截尾的。因而我们可以考虑建立MA(1)模型,为了避免个人经验不足而导致模型建立错误,我们可以通过计算机来判断确定。22proc arima data=lianxi3_18;identify Var=x nlag=8 minic p=(0:5) q=(0:5);run;结果分析:从上图可以看出,在众多模型中,MA1模型的BIC信息量是最小的,因而我们接下来会采用MA(1)模型来进行分析,这与我们上面人工判断分析的结果也是吻合的。estimate q=1;run;23结果分析:以上是我们建立的MA(1)模型中的参数结果。其中,我们可以看出所有的参数均是显著的因而模型建立成立。forecast lead=1 id=time out=results;run;结果分析:以上是我们对数据进行了1期的预测,其预测数据均可以从上图中看出来。其中,数据从左往右分别表示序列值的序号、预测值、预测值的标准差、95%的置信下限和95% 的置信上限。以下我们把这些预测的数据用图来表现出来:proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*tim

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论