版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数(二)常见曲线的参数方程如下:1过定点(x0,y0),倾角为的直线:(t为参数)其中参数t是以定点P(x0,y0)为起点,对应于t点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离根据t的几何意义,有以下结论设A、B是直线上任意两点,它们对应的参数分别为tA和tB,则线段AB的中
2、点所对应的参数值等于2中心在(x0,y0),半径等于r的圆:(为参数)3中心在原点,焦点在x轴(或y轴)上的椭圆:(为参数)(或)中心在点(x0,y0)焦点在平行于x轴的直线上的椭圆的参数方程4中心在原点,焦点在x轴(或y轴)上的双曲线:(为参数)(或)5顶点在原点,焦点在x轴正半轴上的抛物线:(t为参数,p0)直线的参数方程和参数的几何意义过定点P(x0,y0),倾斜角为的直线的参数方程是(t为参数)(三)极坐标系1、定义:在平面内取一个定点O,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M,用表示线段OM的长度,表示从Ox到O
3、M的角,叫做点M的极径,叫做点M的极角,有序数对(, )就叫做点M的极坐标。这样建立的坐标系叫做极坐标系。2、极坐标有四个要素:极点;极轴;长度单位;角度单位及它的方向极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数、对应惟一点P(,),但平面内任一个点P的极坐标不惟一一个点可以有无数个坐标,这些坐标又有规律可循的,P(,)(极点除外)的全部坐标为(,)或(,),(Z)极点的极径为0,而极角任意取若对、的取值范围加以限制则除极点外,平面上点的极坐标就惟一了,如限定0,0或0,等极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多
4、对应的即一个点的极坐标是不惟一的 3、直线相对于极坐标系的几种不同的位置方程的形式分别为: 4、圆相对于极坐标系的几种不同的位置方程的形式分别为: 5、极坐标与直角坐标互化公式: 基础训练A组一、选择题1若直线的参数方程为,则直线的斜率为( )A B C D2下列在曲线上的点是( )A B C D 3将参数方程化为普通方程为( )A B C D 4化极坐标方程为直角坐标方程为( )A B C D 5点的直角坐标是,则点的极坐标为( )A B C D 6极坐标方程表示的曲线为( )A一条射线和一个圆 B两条直线 C一条直线和一个圆 D一个圆二、填空题1直线的斜率为_。2参数方程的普通方程为_。3
5、已知直线与直线相交于点,又点,则_。4直线被圆截得的弦长为_。5直线的极坐标方程为_。三、解答题1已知点是圆上的动点,(1)求的取值范围;(2)若恒成立,求实数的取值范围。2求直线和直线的交点的坐标,及点与的距离。3在椭圆上找一点,使这一点到直线的距离的最小值。一、选择题1直线的参数方程为,上的点对应的参数是,则点与之间的距离是( )A B C D 2参数方程为表示的曲线是( )A一条直线 B两条直线 C一条射线 D两条射线3直线和圆交于两点,则的中点坐标为( )A B C D 4圆的圆心坐标是( )A B C D 5与参数方程为等价的普通方程为( )A B C D 6直线被圆所截得的弦长为(
6、 )A B C D 二、填空题1曲线的参数方程是,则它的普通方程为_。2直线过定点_。3点是椭圆上的一个动点,则的最大值为_。4曲线的极坐标方程为,则曲线的直角坐标方程为_。5设则圆的参数方程为_。三、解答题1参数方程表示什么曲线?2点在椭圆上,求点到直线的最大距离和最小距离。3已知直线经过点,倾斜角,(1)写出直线的参数方程。(2)设与圆相交与两点,求点到两点的距离之积。一、选择题1把方程化为以参数的参数方程是( )A B C D 2曲线与坐标轴的交点是( )A B C D 3直线被圆截得的弦长为( )A B C D 4若点在以点为焦点的抛物线上,则等于( )A B C D 5极坐标方程表示
7、的曲线为( )A极点 B极轴 C一条直线 D两条相交直线6在极坐标系中与圆相切的一条直线的方程为( )A B C D 二、填空题1已知曲线上的两点对应的参数分别为,那么=_。2直线上与点的距离等于的点的坐标是_。3圆的参数方程为,则此圆的半径为_。4极坐标方程分别为与的两个圆的圆心距为_。5直线与圆相切,则_。三、解答题1分别在下列两种情况下,把参数方程化为普通方程:(1)为参数,为常数;(2)为参数,为常数;2过点作倾斜角为的直线与曲线交于点,求的值及相应的的值。新课程高中数学训练题组参考答案数学选修4-4 坐标系与参数方程 基础训练A组一、选择题 1D 2B 转化为普通方程:,当时,3C
8、转化为普通方程:,但是4C5C 都是极坐标6C 则或二、填空题1 2 3 将代入得,则,而,得4 直线为,圆心到直线的距离,弦长的一半为,得弦长为5 ,取三、解答题1解:(1)设圆的参数方程为, (2) 2解:将代入得,得,而,得3解:设椭圆的参数方程为, 当时,此时所求点为。新课程高中数学训练题组参考答案一、选择题 1C 距离为2D 表示一条平行于轴的直线,而,所以表示两条射线3D ,得, 中点为4A 圆心为5D 6C ,把直线代入得,弦长为二、填空题1 而,即2 ,对于任何都成立,则3 椭圆为,设,4 即5 ,当时,;当时,; 而,即,得三、解答题1解:显然,则 即得,即2解:设,则即,当时,;当时,。3解:(1)直线的参数方程为,即 (2)把直线代入得,则点到两点的距离之积为 坐标系与参数方程 提高训练C组一、选择题 1D ,取非零实数,而A,B,C中的的范围有各自的限制2B 当时,而,即,得与轴的交点为; 当时,而,即,得与轴的交点为3B ,把直线代入得,弦长为4C 抛物线为,准线为,为到准线的距离,即为5D ,为两条相交直线6A 的普通方程为,的普通方程为 圆与直线显然相切二、填空题1 显然线段垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度图书馆图书捐赠与交换合同协议3篇
- 2024年人工智能研发数据保密与知识产权保护合同2篇
- 2024年腻子产品行业标准制定与执行合同2篇
- 餐饮跨区配送合同范例
- 股金分红合同范例
- 2024实习与职业素养提升服务劳动合同2篇
- 2024年度保险产品代理销售协议2篇
- 川菜馆转让合同
- 鲜花原材料采购合同
- 宅基地房屋转让合同
- 护理查房慢性乙型病毒性肝炎护理查房
- 在实践中认识针刺麻醉原理
- 浙教版初中科学八年级上册《4.2电流的测量》教学设计附反思
- 医保检查自查自纠报告
- 原味英语交流吧智慧树知到答案章节测试2023年黑龙江农业工程职业学院(松北校区)
- 风量计算公式
- 人音版七上册音乐知识汇总
- 幼儿园幼儿教育数学领域核心经验
- proe基础教程(完整)演示文稿
- 行为金融学课后答案1至5章anawer
- 2023年报告文学研究(自考)(重点)题库(带答案)
评论
0/150
提交评论