版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:8.1二元一次方程组【学习目标】1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。【学习重点】 1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。【学习难点】检验一对数是否是某个二元一次方程(组)的解;【导学】-二元一次方程概念二元一次方程的概念1.我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜
2、负场数应分别是多少?(P93) 归纳:定义_叫做二元一次方程2.二元一次方程的左边和右边都应是整式二元一次方程的一般形式:ax + by + c = 0 (其中a0、b0 且a、b、c为常数)注意:1.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。二元一次方程的解:使二元一次方程两边的值_的两个未知数的_叫做二元一次方程的解。【研学】-什么是二元一次方程组和它的解 1. 已知、都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。 2、把3(x+5)=5(y-1)+3化成ax+by=c的形式为_。3、方程3x2y6,有_个未知数,且未知数都是_
3、次,因此这个方程是_元_次方程。 【检学】 (一)、精心选一选1下列方程组中,不是二元一次方程组的是()2已知的值:其中,是二元一次方程的解的是() 课题:8.2二元一次方程组的解法(1)【学习目标】会运用代入消元法解二元一次方程组【学习重、难点】1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧【导学】 一、基本概念 二元一次方程 二元一次方程组 二元一次方程组的解 【研学】1、将方程5x-6y=12变形:若用含y的式子表示x,则x=_,当y=-2时,x=_;若用含x的式子表示y,则y=_,当x=0时,y=_ 。2、用代人法解方程组,把_代人_,可以消去未知数_,方程变为: 3、若方程
4、y=1-x的解也是方程3x+2y=5的解,则x=_,y=_。4、若的解,则a=_,b=_。5、已知方程组的解也是方程组的解,则a=_,b=_ ,3a+2b=_。6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_,q=_ 。7、用代入法解下列方程组: 【展示提升】 1. 若mn5(2m3n5)20,求(mn)2的值 2.已知2x2m-3n-7-3ym+3n+6=8是关于课题:8.2二元一次方程组的解法(1)【学习目标】会运用代入消元法解二元一次方程组【学习重、难点】1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧【导学】 一、基本概念 二元一次方程 二元一次方程组 二元
5、一次方程组的解 【研学】1、将方程5x-6y=12变形:若用含y的式子表示x,则x=_,当y=-2时,x=_;若用含x的式子表示y,则y=_,当x=0时,y=_ 。2、用代人法解方程组,把_代人_,可以消去未知数_,方程变为: 3、若方程y=1-x的解也是方程3x+2y=5的解,则x=_,y=_。4、若的解,则a=_,b=_。5、已知方程组的解也是方程组的解,则a=_,b=_ ,3a+2b=_。6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_,q=_ 。7、用代入法解下列方程组: 【展示提升】 1. 若mn5(2m3n5)20,求(mn)2的值 2.已知2x2m-3n-7-
6、3ym+3n+6=8是关于x,y的二元一次方程,求n2m【检学】 1、方程组的解是( )A. B. C. D.2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=_,b=_。 。x,y的二元一次方程,求n2m【检学】 1、方程组的解是( )A. B. C. D.2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=_,b=_。 。 课题:8.2二元一次方程组的解法(2)【学习目标】(1)会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。(2)通过探求二元一次方程组的解法,经历用加减法把 “二元”化为“一元”的过程,体会消元的思想,以及把“未知”转化为“已知”,把复杂问题
7、转化为简单问题的化归思想.【学习重、难点】1、用加减法解二元一次方程组.2、两个方程相减消元时,对被减的方程各项符号要做变号处理。【导学】 一、知识链接:怎样解下面二元一次方程组呢? 归纳:两个二元一次方程组中,同一个未知数的系数 或 时,把这两个方程的两边分别 或 ,就能消去这个未知数,得到一个 方程,这种方法就叫做加减消元法。2、用加减消元法解下列方程组 【研学】用加减消元法解方程组 1 2【检学】 练习1:解下列方程 课题:8.2二元一次方程组的解法(3)【学习目标】(1)学会使用方程变形,再用加减消元法解二元一次方程组.(2)解决问题的一个基本思想:化归,即将“未知”化为“已知”,将“
8、复杂”转为“简单”。【学习重、难点】1、用加减消元法解系数绝对值不相等的二元一次方程组2、使方程变形为较恰当的形式,然后加减消元【导学】一、回忆、复习1、方程组中,方程(1)的y的系数与方程(2)的y的系数 ,由+可消去未知数 ,从而得到 ,把x= 代入 中,可得y= .2、方程组中,方程(1)的m的系数与方程(2)的m的系数 ,由( )( )可消去未知数 .3 、用加减法解方程组 【检学】1、用加减消元法解下列方程组 课题:8.2二元一次方程组的解法(4)【学习目标】(1)灵活运用代入消元法、加减消元法解题。(2)经历与体验综合运用知识,灵活、合理地选择并且运用有关方法解决特定问题的过程。(
9、3)更进一步体会消元思想,把复杂的问题转化为简单的问题来处理【学习重、难点】1、灵活运用代入消元法、加减消元法解题2、灵活运用代入消元法、加减消元法解题【导学】回顾 如何解二元一次方程组 1、分别用两种方法解(代入法和加减法)下列方程组(1) (2) 2、选择适当的方法解下列二元一次方程 【检学】1:解下列方程 2.已知方程组的解是,则a=_b=_。3.已知和是同类项,则m=_,n=_ 4.如果,,则=_5.已知使3x5yk2和2x3yk成立的x,y的值的和等于2,则k=_6.已知二元一次方程组那么xy_,xy_【教学反思】课题:8.3实际问题与二元一次方程组(1)【学习目标】1使学生会借助二
10、元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3体会列方程组比列一元一次方程容易4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力【学习重、难点】1、能根据题意列二元一次方程组;根据题意找出等量关系;2、正确发找出问题中的两个等量关系【导学】1列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的( )2一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是( )量(2)同类量的
11、单位要( )(3)方程两边的数值要相符。3列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )4一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )新课探究看一看课本105页探究1 【研学】1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?【检学】1、
12、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?2、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?【教学反思】课题:8.3实际问题与二元一次方程组(2)【学习目标】1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力【学习重、难点】1、能根据题意列二元一次方程组;根据题
13、意找出等量关系;2、正确发找出问题中的两个等量关系【导学】1 甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为( )元和( )元。2 在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球( )个,排球( )个。 3 现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+( )=10 (2)1米的钢材总长+( )=18新课探究(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1 :5,现要在
14、一块长200 m,宽100 m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?(1)先确定有两种方法分割长方形;再分别求出两个小长方形的面积;最后计算分割线的位置(2)先求两个小长方形的面积比,再计算分割线的位置(3)设未知数,列方程组求解如图,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE.设AE=xm,BE=ym,根据问题中涉及长度、产量的数量关系,列方程组得解这个方程组得答 过长方形土地的长边上离一端约( ) m处,把这块地分为两个长方形较大一块地种()作物,较小一块地种()作物你还能设计别的种植方案吗
15、?请写出来【研学】1.学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请你设计一种分法【检学】1.解方程组2小颖在拼图时,发现8个一样大小的矩形(如图1所示),恰好可以拼成一个大的矩形 小彬看见了,说:“我来试一试”结果小彬七拼八凑,拼成如图2那样的正方形咳,怎么中间还留下一个洞,恰好是边长2 mm的小正方形! 你能帮他们解开其中的奥秘吗? 提示学生先动手实践,再分析讨论【教学反思】课题:8.3
16、实际问题与二元一次方程组(3)【学习目标】1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值【学习重、难点】1、借助列表分问题中所蕴含的数量关系。2、用列表的方式分析题目中的各个量的关系。【导学】1某校办工厂现在年产值是非曲直5万元,如果每增加工厂100元投资一年可增加班费50元产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为( )2一旅游者从下午宴时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下
17、山回到出发点,已知他走平路时每小时走4km,爬山时每小时走3km,下坡时每小时走6km,问旅游者一共走了( )km3.,两地相距千米,甲乙两人分别从,两地同时相向而行,两小时后在途中相遇,然后甲返回A地,乙仍继续前进,当甲回到A地时,乙离A地还有2千米,则甲乙的速度分别为()和()新课探究(出示例题)如图,长青化工厂与A,B两地有公路、铁路相连这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地公路运价为1. 5元(吨千米),铁路运价为1.2元(吨千米),这两次运输共支出公路运费15000元,铁路运费97200元这批产品的销售款比原料费与运输费的和多多少元?
18、 【研学】(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车已知过去两次租用这两种货车的记录如下表所示甲种货车(辆)乙种货车(辆)总量(吨)第1次4528.5第2次3627这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?【检学】1.某学校现有学生数1290人,与去年相比,男生增加20,女生减少10,学生总数增加7. 5,问现在学校中男、女生各是多少?2.一千零一夜中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若
19、从树上飞下去一只,则树上、树下的鸽子就一样多了”你知道树上、树下各有多少只鸽子吗?【教学反思】课题:8.4三元一次方程组解法举例【学习目标】1.了解三元一次方程组的概念,理解解三元一次方程组的基本思路,2.会解三元一次方程组,掌握三元一次方程组的解法及其步骤。【学习重、难点】三元一次方程组的解法【导学】1、请快速写出方程组的解: ; 2、请快速写出方程组的解: ; 3、 以上两个方程组都是 方程组,第一个方程组用 法较便捷,第二个方程组用 法较便捷,不管那一种方法,它们的目的都是为了 ,从而把二元一次方程组转化为 方程来解。【研学】(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车已知过去两次租用这两种货车的记录如下表所示甲种货车(辆)乙种货车(辆)总量(吨)第1次4528.5第2次3627这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元 小结:解三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 期中质量检测(1-4单元)(试题)-2024-2025学年四年级上册数学苏教版
- DB11T 1483-2017 小型消防站建设规范
- 国家消毒产品随机监督抽查计划表
- 全区妇幼健康职业技能竞赛各层级参赛选手统计表
- 人教版物理八年级下册 专项训练卷 (三)功和机械能、简单机械(含答案)
- 广西壮族自治区贺州市昭平县2024-2025学年九年级上学期11月期中化学试题(含答案)
- 半导体芯片市场需求与消费特点分析
- 保温杯产业规划专项研究报告
- 公路自行车产业运行及前景预测报告
- 人教版英语八年级下册 Units 1-5复习练习题
- 就业协议解约书范文
- 第四章-草地类型、分布及分区
- 精益生产系列课程-OPE效率体系
- 印刷合同协议书 完整版doc正规范本(通用版)
- 胃癌(英文版)课件
- 公司薪酬管理实施细则
- 浙江省温州市实验中学2023-2024学年九年级上学期期中科学试卷
- 扣款通知单 采购部
- 2023年日历模板excel版本
- Unit 1 Laugh out Loud!单元教学设计-2023-2024学年高中英语外研版(2019)选择性必修第一册
- 垃圾自动分拣机构plc控制毕业论文
评论
0/150
提交评论